{"id":"https://openalex.org/W4310926665","doi":"https://doi.org/10.48550/arxiv.2212.03840","title":"Fairness and Explainability: Bridging the Gap Towards Fair Model Explanations","display_name":"Fairness and Explainability: Bridging the Gap Towards Fair Model Explanations","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4310926665","doi":"https://doi.org/10.48550/arxiv.2212.03840"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.03840","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2212.03840","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100559873","display_name":"Yuying Zhao","orcid":"https://orcid.org/0000-0001-7403-7365"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhao, Yuying","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100445368","display_name":"Yu Wang","orcid":"https://orcid.org/0000-0003-3511-0288"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Yu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5036086705","display_name":"Tyler Derr","orcid":"https://orcid.org/0000-0002-0080-5998"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Derr, Tyler","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":59},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12026","display_name":"Explainable Artificial Intelligence (XAI)","score":0.9913,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12026","display_name":"Explainable Artificial Intelligence (XAI)","score":0.9913,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10883","display_name":"Ethics and Social Impacts of AI","score":0.9711,"subfield":{"id":"https://openalex.org/subfields/3311","display_name":"Safety Research"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/debiasing","display_name":"Debiasing","score":0.94334614},{"id":"https://openalex.org/keywords/fairness-measure","display_name":"Fairness measure","score":0.42235106},{"id":"https://openalex.org/keywords/bridge","display_name":"Bridge (graph theory)","score":0.4106141}],"concepts":[{"id":"https://openalex.org/C2779458634","wikidata":"https://www.wikidata.org/wiki/Q24963715","display_name":"Debiasing","level":2,"score":0.94334614},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7357894},{"id":"https://openalex.org/C174348530","wikidata":"https://www.wikidata.org/wiki/Q188635","display_name":"Bridging (networking)","level":2,"score":0.71613896},{"id":"https://openalex.org/C12713177","wikidata":"https://www.wikidata.org/wiki/Q1900281","display_name":"Perspective (graphical)","level":2,"score":0.6837013},{"id":"https://openalex.org/C2779530757","wikidata":"https://www.wikidata.org/wiki/Q1207505","display_name":"Quality (philosophy)","level":2,"score":0.4621023},{"id":"https://openalex.org/C11867375","wikidata":"https://www.wikidata.org/wiki/Q5430671","display_name":"Fairness measure","level":4,"score":0.42235106},{"id":"https://openalex.org/C100776233","wikidata":"https://www.wikidata.org/wiki/Q2532492","display_name":"Bridge (graph theory)","level":2,"score":0.4106141},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.38988656},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.30950943},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.15532392},{"id":"https://openalex.org/C77805123","wikidata":"https://www.wikidata.org/wiki/Q161272","display_name":"Social psychology","level":1,"score":0.12198815},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C111472728","wikidata":"https://www.wikidata.org/wiki/Q9471","display_name":"Epistemology","level":1,"score":0.0},{"id":"https://openalex.org/C157764524","wikidata":"https://www.wikidata.org/wiki/Q1383412","display_name":"Throughput","level":3,"score":0.0},{"id":"https://openalex.org/C555944384","wikidata":"https://www.wikidata.org/wiki/Q249","display_name":"Wireless","level":2,"score":0.0},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.0},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.0},{"id":"https://openalex.org/C126322002","wikidata":"https://www.wikidata.org/wiki/Q11180","display_name":"Internal medicine","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.03840","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2212.03840","pdf_url":"http://arxiv.org/pdf/2212.03840","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2212.03840","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.03840","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/10","score":0.64,"display_name":"Reduced inequalities"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4390963114","https://openalex.org/W4386875279","https://openalex.org/W4362554880","https://openalex.org/W4287887864","https://openalex.org/W4281684980","https://openalex.org/W4225584739","https://openalex.org/W3214527415","https://openalex.org/W2199432031","https://openalex.org/W2171721708","https://openalex.org/W1495104519"],"abstract_inverted_index":{"While":[0],"machine":[1,81],"learning":[2],"models":[3],"have":[4,29,69],"achieved":[5],"unprecedented":[6],"success":[7],"in":[8,23,50,56],"real-world":[9,199],"applications,":[10],"they":[11,37],"might":[12],"make":[13],"biased/unfair":[14],"decisions":[15],"for":[16,84],"specific":[17],"demographic":[18],"groups":[19,131],"and":[20,34,104,134,191,208],"hence":[21],"result":[22],"discriminative":[24],"outcomes.":[25],"Although":[26],"research":[27],"efforts":[28],"been":[30],"devoted":[31],"to":[32,59,68,89,144,149],"measuring":[33,123],"mitigating":[35],"bias,":[36,62],"mainly":[38],"study":[39],"bias":[40,48,121,153,162],"from":[41,163,215],"the":[42,47,51,66,76,93,100,119,124,151,164,193,202,210,216],"result-oriented":[43],"perspective":[44,110],"while":[45],"neglecting":[46],"encoded":[49],"decision-making":[52],"procedure.":[53,94],"This":[54],"results":[55],"their":[57],"inability":[58],"capture":[60],"procedure-oriented":[61,112],"which":[63,179],"therefore":[64],"limits":[65],"ability":[67],"a":[70,108,174],"fully":[71],"debiasing":[72],"method.":[73],"Fortunately,":[74],"with":[75,132],"rapid":[77],"development":[78],"of":[79,111,126,204,212],"explainable":[80],"learning,":[82],"explanations":[83],"predictions":[85],"are":[86],"now":[87],"available":[88,223],"gain":[90],"insights":[91],"into":[92],"In":[95],"this":[96],"work,":[97],"we":[98,155,172],"bridge":[99],"gap":[101,125],"between":[102,129],"fairness":[103,113,214],"explainability":[105,217],"by":[106,122],"presenting":[107],"novel":[109],"based":[114],"on":[115,167,198],"explanations.":[116],"We":[117],"identify":[118],"procedure-based":[120,152],"explanation":[127,189],"quality":[128],"different":[130],"Ratio-based":[133],"Value-based":[135],"Explanation":[136],"Fairness.":[137],"The":[138],"new":[139],"metrics":[140],"further":[141],"motivate":[142],"us":[143],"design":[145],"an":[146],"optimization":[147,170],"objective":[148],"mitigate":[150,161],"where":[154],"observe":[156],"that":[157],"it":[158],"will":[159],"also":[160],"prediction.":[165],"Based":[166],"our":[168,205],"designed":[169],"objective,":[171],"propose":[173],"Comprehensive":[175],"Fairness":[176],"Algorithm":[177],"(CFA),":[178],"simultaneously":[180],"fulfills":[181],"multiple":[182],"objectives":[183],"-":[184],"improving":[185],"traditional":[186],"fairness,":[187,190],"satisfying":[188],"maintaining":[192],"utility":[194],"performance.":[195],"Extensive":[196],"experiments":[197],"datasets":[200],"demonstrate":[201],"effectiveness":[203],"proposed":[206],"CFA":[207],"highlight":[209],"importance":[211],"considering":[213],"perspective.":[218],"Our":[219],"code":[220],"is":[221],"publicly":[222],"at":[224],"https://github.com/YuyingZhao/FairExplanations-CFA":[225],".":[226]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4310926665","counts_by_year":[],"updated_date":"2025-03-02T09:10:34.455019","created_date":"2022-12-21"}