{"id":"https://openalex.org/W4310924809","doi":"https://doi.org/10.48550/arxiv.2212.03640","title":"Fine-tuned CLIP Models are Efficient Video Learners","display_name":"Fine-tuned CLIP Models are Efficient Video Learners","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4310924809","doi":"https://doi.org/10.48550/arxiv.2212.03640"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.03640","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2212.03640","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5064948724","display_name":"Hanoona Rasheed","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Rasheed, Hanoona","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5077014645","display_name":"Muhammad Uzair Khattak","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Khattak, Muhammad Uzair","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5034370385","display_name":"Muhammad Maaz","orcid":"https://orcid.org/0000-0002-3869-631X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Maaz, Muhammad","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101483978","display_name":"Salman Khan","orcid":"https://orcid.org/0000-0001-8732-3395"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Khan, Salman","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5100760570","display_name":"Fahad Shahbaz Khan","orcid":"https://orcid.org/0000-0002-4263-3143"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Khan, Fahad Shahbaz","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10515","display_name":"Cancer-related molecular mechanisms research","score":0.9947,"subfield":{"id":"https://openalex.org/subfields/1306","display_name":"Cancer Research"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.985,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/overfitting","display_name":"Overfitting","score":0.5367234},{"id":"https://openalex.org/keywords/pyramid","display_name":"Pyramid (geometry)","score":0.46912146},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.45502195},{"id":"https://openalex.org/keywords/similarity","display_name":"Similarity (geometry)","score":0.4211082},{"id":"https://openalex.org/keywords/transfer-of-learning","display_name":"Transfer of learning","score":0.41202825}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8289495},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6533626},{"id":"https://openalex.org/C177148314","wikidata":"https://www.wikidata.org/wiki/Q170084","display_name":"Generalization","level":2,"score":0.6257789},{"id":"https://openalex.org/C22019652","wikidata":"https://www.wikidata.org/wiki/Q331309","display_name":"Overfitting","level":3,"score":0.5367234},{"id":"https://openalex.org/C192209626","wikidata":"https://www.wikidata.org/wiki/Q190909","display_name":"Focus (optics)","level":2,"score":0.49248227},{"id":"https://openalex.org/C142575187","wikidata":"https://www.wikidata.org/wiki/Q3358290","display_name":"Pyramid (geometry)","level":2,"score":0.46912146},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.45630047},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.45502195},{"id":"https://openalex.org/C165064840","wikidata":"https://www.wikidata.org/wiki/Q1321061","display_name":"Matching (statistics)","level":2,"score":0.44108304},{"id":"https://openalex.org/C118505674","wikidata":"https://www.wikidata.org/wiki/Q42586063","display_name":"Encoder","level":2,"score":0.4282598},{"id":"https://openalex.org/C126042441","wikidata":"https://www.wikidata.org/wiki/Q1324888","display_name":"Frame (networking)","level":2,"score":0.42818204},{"id":"https://openalex.org/C103278499","wikidata":"https://www.wikidata.org/wiki/Q254465","display_name":"Similarity (geometry)","level":3,"score":0.4211082},{"id":"https://openalex.org/C150899416","wikidata":"https://www.wikidata.org/wiki/Q1820378","display_name":"Transfer of learning","level":2,"score":0.41202825},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.3525992},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.14439747},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.03640","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2212.03640","pdf_url":"http://arxiv.org/pdf/2212.03640","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2212.03640","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.03640","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/4","score":0.66,"display_name":"Quality education"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4390929683","https://openalex.org/W4378510483","https://openalex.org/W4376166922","https://openalex.org/W4362597605","https://openalex.org/W4297676672","https://openalex.org/W4281702477","https://openalex.org/W3009056573","https://openalex.org/W2922073769","https://openalex.org/W2490526372","https://openalex.org/W1574414179"],"abstract_inverted_index":{"Large-scale":[0],"multi-modal":[1],"training":[2,13],"with":[3,136],"image-text":[4],"pairs":[5],"imparts":[6],"strong":[7,208],"generalization":[8,77],"to":[9,32,44,67,85,91,109,116,154,184,198],"CLIP":[10,31,89,103,127,200],"model.":[11],"Since":[12],"on":[14,25,63,69,156,193,210],"a":[15,99,175],"similar":[16],"scale":[17],"for":[18],"videos":[19],"is":[20,106,170,225],"infeasible,":[21],"recent":[22],"approaches":[23],"focus":[24,155],"the":[26,33,58,70,81,111,123,144,152,186],"effective":[27],"transfer":[28,87],"of":[29],"image-based":[30],"video":[34,221],"domain.":[35],"In":[36,93],"this":[37,94,205],"pursuit,":[38],"new":[39],"parametric":[40],"modules":[41],"are":[42,61],"added":[43],"learn":[45],"temporal":[46,145],"information":[47],"and":[48,74,133,161,177,189,195,215],"inter-frame":[49],"relationships":[50],"which":[51],"require":[52],"meticulous":[53],"design":[54],"efforts.":[55],"Furthermore,":[56],"when":[57],"resulting":[59],"models":[60],"learned":[62],"videos,":[64],"they":[65],"tend":[66],"overfit":[68],"given":[71],"task":[72],"distribution":[73],"lack":[75],"in":[76,141],"aspect.":[78],"This":[79],"begs":[80],"following":[82],"question:":[83],"How":[84],"effectively":[86],"image-level":[88],"representations":[90],"videos?":[92],"work,":[95],"we":[96,173],"show":[97],"that":[98,122,180],"simple":[100,206],"Video":[101],"Fine-tuned":[102],"(ViFi-CLIP)":[104],"baseline":[105,209],"generally":[107],"sufficient":[108],"bridge":[110,185],"domain":[112,187],"gap":[113,188],"from":[114,126],"images":[115],"videos.":[117],"Our":[118,223],"qualitative":[119],"analysis":[120],"illustrates":[121],"frame-level":[124],"processing":[125],"image-encoder":[128],"followed":[129],"by":[130],"feature":[131],"pooling":[132],"similarity":[134],"matching":[135],"corresponding":[137],"text":[138],"embeddings":[139],"helps":[140,151],"implicitly":[142],"modeling":[143],"cues":[146],"within":[147],"ViFi-CLIP.":[148],"Such":[149],"fine-tuning":[150,169,183],"model":[153],"scene":[157],"dynamics,":[158],"moving":[159],"objects":[160],"inter-object":[162],"relationships.":[163],"For":[164],"low-data":[165],"regimes":[166],"where":[167],"full":[168],"not":[171],"viable,":[172],"propose":[174],"`bridge":[176],"prompt'":[178],"approach":[179],"first":[181],"uses":[182],"then":[190],"learns":[191],"prompts":[192],"language":[194],"vision":[196],"side":[197],"adapt":[199],"representations.":[201],"We":[202],"extensively":[203],"evaluate":[204],"yet":[207],"zero-shot,":[211],"base-to-novel":[212],"generalization,":[213],"few-shot":[214],"fully":[216],"supervised":[217],"settings":[218],"across":[219],"five":[220],"benchmarks.":[222],"code":[224],"available":[226],"at":[227],"https://github.com/muzairkhattak/ViFi-CLIP.":[228]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4310924809","counts_by_year":[],"updated_date":"2024-12-15T20:23:31.494490","created_date":"2022-12-21"}