{"id":"https://openalex.org/W4310633311","doi":"https://doi.org/10.48550/arxiv.2212.00771","title":"Neural Representations Reveal Distinct Modes of Class Fitting in Residual Convolutional Networks","display_name":"Neural Representations Reveal Distinct Modes of Class Fitting in Residual Convolutional Networks","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4310633311","doi":"https://doi.org/10.48550/arxiv.2212.00771"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.00771","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2212.00771","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5080226074","display_name":"Micha\u0142 H. Jamr\u00f3z","orcid":"https://orcid.org/0000-0002-7255-6476"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jamro\u017c, Micha\u0142","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5047178506","display_name":"Marcin Kurdziel","orcid":"https://orcid.org/0000-0003-2022-7424"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kurdziel, Marcin","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9985,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9985,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9859,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11206","display_name":"Model Reduction and Neural Networks","score":0.977,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/leverage","display_name":"Leverage (statistics)","score":0.68037546},{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.5168165}],"concepts":[{"id":"https://openalex.org/C153083717","wikidata":"https://www.wikidata.org/wiki/Q6535263","display_name":"Leverage (statistics)","level":2,"score":0.68037546},{"id":"https://openalex.org/C155512373","wikidata":"https://www.wikidata.org/wiki/Q287450","display_name":"Residual","level":2,"score":0.66725886},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.59337157},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.59104085},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5410491},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.5168165},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.4993961},{"id":"https://openalex.org/C2777212361","wikidata":"https://www.wikidata.org/wiki/Q5127848","display_name":"Class (philosophy)","level":2,"score":0.49021798},{"id":"https://openalex.org/C49937458","wikidata":"https://www.wikidata.org/wiki/Q2599292","display_name":"Probabilistic logic","level":2,"score":0.4401104},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.40228137},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.39957047},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.28224164},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.00771","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2212.00771","pdf_url":"http://arxiv.org/pdf/2212.00771","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2212.00771","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.00771","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4391013256","https://openalex.org/W4293226380","https://openalex.org/W4233449973","https://openalex.org/W2949601986","https://openalex.org/W2925692864","https://openalex.org/W2788972299","https://openalex.org/W2768526084","https://openalex.org/W2729981612","https://openalex.org/W2521347458","https://openalex.org/W2498789492"],"abstract_inverted_index":{"We":[0,28,101],"leverage":[1],"probabilistic":[2],"models":[3,21,32,49],"of":[4,36,64,73,78,87,113,124],"neural":[5,108,125],"representations":[6,23,37,109,126],"to":[7,33,97,135],"investigate":[8],"how":[9],"residual":[10],"networks":[11],"fit":[12],"classes.":[13,40],"To":[14],"this":[15],"end,":[16],"we":[17,42,60,120],"estimate":[18],"class-conditional":[19,122],"density":[20],"for":[22,145],"learned":[24,39],"by":[25],"deep":[26],"ResNets.":[27],"then":[29],"use":[30],"these":[31],"characterize":[34],"distributions":[35,72,123],"across":[38],"Surprisingly,":[41],"find":[43],"that":[44,66,92,103],"classes":[45,65],"in":[46,53,83,107,138],"the":[47,58,84,88,104,139],"investigated":[48,89],"are":[50,67,80,94],"not":[51,95],"fitted":[52,68],"an":[54],"uniform":[55],"way.":[56],"On":[57],"contrary:":[59],"uncover":[61,136],"two":[62],"groups":[63],"with":[69,111],"markedly":[70],"different":[71],"representations.":[74],"These":[75],"distinct":[76],"modes":[77],"class-fitting":[79],"evident":[81],"only":[82],"deeper":[85],"layers":[86],"models,":[90],"indicating":[91],"they":[93],"related":[96],"low-level":[98],"image":[99],"features.":[100],"show":[102],"uncovered":[105],"structure":[106,141],"correlate":[110],"memorization":[112],"training":[114],"examples":[115],"and":[116,129,147],"adversarial":[117],"robustness.":[118],"Finally,":[119],"compare":[121],"between":[127],"memorized":[128,146],"typical":[130],"examples.":[131],"This":[132],"allows":[133],"us":[134],"where":[137],"network":[140],"class":[142],"labels":[143],"arise":[144],"standard":[148],"inputs.":[149]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4310633311","counts_by_year":[],"updated_date":"2024-12-07T18:13:16.875923","created_date":"2022-12-13"}