{"id":"https://openalex.org/W4310556608","doi":"https://doi.org/10.48550/arxiv.2211.16581","title":"Batching and Optimal Multi-stage Bipartite Allocations","display_name":"Batching and Optimal Multi-stage Bipartite Allocations","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4310556608","doi":"https://doi.org/10.48550/arxiv.2211.16581"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.16581","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2211.16581","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5041757714","display_name":"Yiding Feng","orcid":"https://orcid.org/0000-0002-8258-6994"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Feng, Yiding","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5014759933","display_name":"Rad Niazadeh","orcid":"https://orcid.org/0000-0002-5880-6221"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Niazadeh, Rad","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":7,"citation_normalized_percentile":{"value":0.972735,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":86,"max":88},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12288","display_name":"Optimization and Search Problems","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12288","display_name":"Optimization and Search Problems","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10720","display_name":"Complexity and Algorithms in Graphs","score":0.9932,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12101","display_name":"Advanced Bandit Algorithms Research","score":0.989,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/competitive-analysis","display_name":"Competitive Analysis","score":0.65854144},{"id":"https://openalex.org/keywords/online-algorithm","display_name":"Online algorithm","score":0.60771364}],"concepts":[{"id":"https://openalex.org/C165064840","wikidata":"https://www.wikidata.org/wiki/Q1321061","display_name":"Matching (statistics)","level":2,"score":0.7552792},{"id":"https://openalex.org/C102408133","wikidata":"https://www.wikidata.org/wiki/Q5156350","display_name":"Competitive analysis","level":3,"score":0.65854144},{"id":"https://openalex.org/C197657726","wikidata":"https://www.wikidata.org/wiki/Q174733","display_name":"Bipartite graph","level":3,"score":0.6582092},{"id":"https://openalex.org/C2778869765","wikidata":"https://www.wikidata.org/wiki/Q6028363","display_name":"Inefficiency","level":2,"score":0.63446945},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.63065135},{"id":"https://openalex.org/C196921405","wikidata":"https://www.wikidata.org/wiki/Q786431","display_name":"Online algorithm","level":2,"score":0.60771364},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.53437924},{"id":"https://openalex.org/C61455927","wikidata":"https://www.wikidata.org/wiki/Q1030529","display_name":"Blossom algorithm","level":3,"score":0.459461},{"id":"https://openalex.org/C80899671","wikidata":"https://www.wikidata.org/wiki/Q1304193","display_name":"Vertex (graph theory)","level":3,"score":0.4423944},{"id":"https://openalex.org/C41045048","wikidata":"https://www.wikidata.org/wiki/Q202843","display_name":"Linear programming","level":2,"score":0.43353105},{"id":"https://openalex.org/C112680207","wikidata":"https://www.wikidata.org/wiki/Q714886","display_name":"Regular polygon","level":2,"score":0.41393054},{"id":"https://openalex.org/C77553402","wikidata":"https://www.wikidata.org/wiki/Q13222579","display_name":"Upper and lower bounds","level":2,"score":0.2681734},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.24471131},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.23535287},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.22297513},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.16246524},{"id":"https://openalex.org/C175444787","wikidata":"https://www.wikidata.org/wiki/Q39072","display_name":"Microeconomics","level":1,"score":0.1138787},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.08912206},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.16581","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2211.16581","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.16581","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Industry, innovation and infrastructure","id":"https://metadata.un.org/sdg/9","score":0.51}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4213299358","https://openalex.org/W3115340459","https://openalex.org/W2950803469","https://openalex.org/W2793095688","https://openalex.org/W2583614279","https://openalex.org/W2564742953","https://openalex.org/W2109659895","https://openalex.org/W2004975914","https://openalex.org/W1930615501","https://openalex.org/W1623410360"],"abstract_inverted_index":{"In":[0],"several":[1],"applications":[2],"of":[3,6,51,118,153,164,187,199,211,237,248],"real-time":[4],"matching":[5,87,190,215,236],"demand":[7,22,171],"to":[8,19,72,114,145,204,218,265],"supply":[9,178],"in":[10,56,66,70,135,172,179],"online":[11,61,73,99],"marketplaces,":[12],"the":[13,21,25,33,52,57,90,115,132,147,154,170,185,188,212,229,235,242,255,267],"platform":[14],"allows":[15],"for":[16,78,97],"some":[17],"latency":[18],"batch":[20],"and":[23,38,65,151,252],"improve":[24],"efficiency.":[26],"Motivated":[27],"by":[28,131],"these":[29,220,249],"applications,":[30],"we":[31,47,195,258],"study":[32],"optimal":[34,83,232],"trade-off":[35,148],"between":[36,149],"batching":[37],"inefficiency":[39],"under":[40],"adversarial":[41,58],"arrival.":[42,74],"As":[43],"our":[44,226],"base":[45],"model,":[46],"consider":[48],"K-stage":[49],"variants":[50],"vertex":[53],"weighted":[54],"b-matching":[55],"setting,":[59],"where":[60],"vertices":[62],"arrive":[63],"stage-wise":[64],"K":[67],"batches":[68],"--":[69],"contrast":[71],"Our":[75,139],"main":[76,140],"result":[77,113],"this":[79,112,238,273],"problem":[80],"is":[81,129,142,275],"an":[82],"(1-(1-1/K)^K)-":[84],"competitive":[85,93,268],"(fractional)":[86],"algorithm,":[88],"improving":[89],"classic":[91],"(1-1/e)":[92],"ratio":[94],"bound":[95],"known":[96],"its":[98],"variant":[100],"(Mehta":[101],"et":[102,106,125],"al.,":[103,107,126],"2007;":[104],"Aggarwal":[105],"2011).":[108],"We":[109,158,270],"also":[110],"extend":[111],"rich":[116],"model":[117],"multi-stage":[119,262],"configuration":[120],"allocation":[121],"with":[122,201],"free-disposals":[123],"(Devanur":[124],"2016),":[127],"which":[128],"motivated":[130],"display":[133],"advertising":[134],"video":[136],"streaming":[137],"platforms.":[138],"technique":[141],"developing":[143],"tools":[144],"vary":[146],"\"greedy-ness\"":[150],"\"hedging\"":[152],"algorithm":[155,227,274],"across":[156,191],"stages.":[157,192],"rely":[159],"on":[160],"a":[161,173,197,260],"particular":[162],"family":[163],"convex-programming":[165],"based":[166],"matchings":[167],"that":[168],"distribute":[169],"specifically":[174],"balanced":[175],"way":[176],"among":[177],"different":[180],"stages,":[181],"while":[182],"carefully":[183],"modifying":[184],"balancedness":[186],"resulting":[189],"More":[193],"precisely,":[194],"identify":[196],"sequence":[198],"polynomials":[200],"decreasing":[202],"degrees":[203],"be":[205],"used":[206],"as":[207,234],"strictly":[208],"concave":[209],"regularizers":[210,256],"maximum":[213],"weight":[214],"linear":[216],"program":[217],"form":[219],"convex":[221,243,250],"programs.":[222],"At":[223],"each":[224],"stage,":[225],"returns":[228],"corresponding":[230],"regularized":[231],"solution":[233],"stage":[239],"(by":[240],"solving":[241],"program).":[244],"Using":[245],"structural":[246],"properties":[247],"programs":[251],"recursively":[253],"connecting":[254],"together,":[257],"develop":[259],"new":[261],"primal-dual":[263],"framework":[264],"analyze":[266],"ratio.":[269],"further":[271],"show":[272],"optimally":[276],"competitive.":[277]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4310556608","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":3},{"year":2021,"cited_by_count":1}],"updated_date":"2025-02-21T15:19:47.976900","created_date":"2022-12-12"}