{"id":"https://openalex.org/W4310428385","doi":"https://doi.org/10.48550/arxiv.2211.15436","title":"Context-Adaptive Deep Neural Networks via Bridge-Mode Connectivity","display_name":"Context-Adaptive Deep Neural Networks via Bridge-Mode Connectivity","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4310428385","doi":"https://doi.org/10.48550/arxiv.2211.15436"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.15436","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2211.15436","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5026964758","display_name":"Nathan Drenkow","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Drenkow, Nathan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5048281777","display_name":"Alvin Tan","orcid":"https://orcid.org/0000-0003-1366-8168"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Tan, Alvin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5028530447","display_name":"Chace Ashcraft","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ashcraft, Chace","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5061482370","display_name":"Kiran Karra","orcid":"https://orcid.org/0000-0001-8072-4014"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Karra, Kiran","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12120","display_name":"Air Quality Monitoring and Forecasting","score":0.9954,"subfield":{"id":"https://openalex.org/subfields/2305","display_name":"Environmental Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12120","display_name":"Air Quality Monitoring and Forecasting","score":0.9954,"subfield":{"id":"https://openalex.org/subfields/2305","display_name":"Environmental Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":0.9832,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9814,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/bridge","display_name":"Bridge (graph theory)","score":0.72521377},{"id":"https://openalex.org/keywords/sample","display_name":"Sample (material)","score":0.47790942},{"id":"https://openalex.org/keywords/context-model","display_name":"Context model","score":0.4462324},{"id":"https://openalex.org/keywords/mode","display_name":"Mode (computer interface)","score":0.41524178}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.76687366},{"id":"https://openalex.org/C2779343474","wikidata":"https://www.wikidata.org/wiki/Q3109175","display_name":"Context (archaeology)","level":2,"score":0.74016166},{"id":"https://openalex.org/C100776233","wikidata":"https://www.wikidata.org/wiki/Q2532492","display_name":"Bridge (graph theory)","level":2,"score":0.72521377},{"id":"https://openalex.org/C105339364","wikidata":"https://www.wikidata.org/wiki/Q2297740","display_name":"Software deployment","level":2,"score":0.6401707},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5621711},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5506425},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5427369},{"id":"https://openalex.org/C204323151","wikidata":"https://www.wikidata.org/wiki/Q905424","display_name":"Range (aeronautics)","level":2,"score":0.49862337},{"id":"https://openalex.org/C198531522","wikidata":"https://www.wikidata.org/wiki/Q485146","display_name":"Sample (material)","level":2,"score":0.47790942},{"id":"https://openalex.org/C183322885","wikidata":"https://www.wikidata.org/wiki/Q17007702","display_name":"Context model","level":3,"score":0.4462324},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.4222892},{"id":"https://openalex.org/C48677424","wikidata":"https://www.wikidata.org/wiki/Q6888088","display_name":"Mode (computer interface)","level":2,"score":0.41524178},{"id":"https://openalex.org/C107457646","wikidata":"https://www.wikidata.org/wiki/Q207434","display_name":"Human\u2013computer interaction","level":1,"score":0.1396392},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.10577181},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.075525284},{"id":"https://openalex.org/C126322002","wikidata":"https://www.wikidata.org/wiki/Q11180","display_name":"Internal medicine","level":1,"score":0.0},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C166957645","wikidata":"https://www.wikidata.org/wiki/Q23498","display_name":"Archaeology","level":1,"score":0.0},{"id":"https://openalex.org/C43617362","wikidata":"https://www.wikidata.org/wiki/Q170050","display_name":"Chromatography","level":1,"score":0.0},{"id":"https://openalex.org/C146978453","wikidata":"https://www.wikidata.org/wiki/Q3798668","display_name":"Aerospace engineering","level":1,"score":0.0},{"id":"https://openalex.org/C2781238097","wikidata":"https://www.wikidata.org/wiki/Q175026","display_name":"Object (grammar)","level":2,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.15436","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2211.15436","pdf_url":"http://arxiv.org/pdf/2211.15436","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2211.15436","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.15436","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Sustainable cities and communities","score":0.81,"id":"https://metadata.un.org/sdg/11"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W96612179","https://openalex.org/W632915154","https://openalex.org/W4256492088","https://openalex.org/W4229499248","https://openalex.org/W3022067003","https://openalex.org/W2987774938","https://openalex.org/W2770234245","https://openalex.org/W2767394639","https://openalex.org/W2566006169","https://openalex.org/W2055733372"],"abstract_inverted_index":{"The":[0],"deployment":[1],"of":[2,22,102,108,128,154,160],"machine":[3],"learning":[4],"models":[5,15,47,103],"in":[6,34,61,70,130,139,176],"safety-critical":[7],"applications":[8],"comes":[9],"with":[10],"the":[11,120,126,140,155],"expectation":[12],"that":[13,111,167],"such":[14,110],"will":[16],"perform":[17],"well":[18],"over":[19,104],"a":[20,25,81,105],"range":[21],"contexts":[23],"(e.g.,":[24],"vision":[26],"model":[27,115,168],"for":[28,51,84,158],"classifying":[29],"street":[30],"signs":[31],"should":[32],"work":[33],"rural,":[35],"city,":[36],"and":[37,146,163],"highway":[38],"settings":[39],"under":[40],"varying":[41],"lighting/weather":[42],"conditions).":[43],"However,":[44],"these":[45,161],"one-size-fits-all":[46],"are":[48],"typically":[49],"optimized":[50],"average":[52],"case":[53],"performance,":[54],"encouraging":[55],"them":[56,66],"to":[57,67,97,119,174],"achieve":[58],"high":[59],"performance":[60,169],"nominal":[62],"conditions":[63],"but":[64],"exposing":[65],"unexpected":[68],"behavior":[69],"challenging":[71],"or":[72],"rare":[73],"contexts.":[74],"To":[75],"address":[76],"this":[77],"concern,":[78],"we":[79,112],"develop":[80,151],"new":[82],"method":[83],"training":[85],"context-dependent":[86,147],"models.":[87],"We":[88,124,150],"extend":[89],"Bridge-Mode":[90],"Connectivity":[91],"(BMC)":[92],"(Garipov":[93],"et":[94],"al.,":[95],"2018)":[96],"train":[98],"an":[99],"infinite":[100],"ensemble":[101],"continuous":[106],"measure":[107],"context":[109,129,175],"can":[113,170],"sample":[114],"parameters":[116],"specifically":[117],"tuned":[118,173],"corresponding":[121],"evaluation":[122],"context.":[123],"explore":[125],"definition":[127],"image":[131,144],"classification":[132],"tasks":[133],"through":[134],"multiple":[135],"lenses":[136],"including":[137],"changes":[138],"risk":[141],"profile,":[142],"long-tail":[143],"statistics/appearance,":[145],"distribution":[148],"shift.":[149],"novel":[152],"extensions":[153],"BMC":[156],"optimization":[157],"each":[159,177],"cases":[162],"our":[164],"experiments":[165],"demonstrate":[166],"be":[171],"successfully":[172],"scenario.":[178]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4310428385","counts_by_year":[],"updated_date":"2024-12-07T05:23:27.163896","created_date":"2022-12-10"}