{"id":"https://openalex.org/W4310269181","doi":"https://doi.org/10.48550/arxiv.2211.13374","title":"A Multivariate Non-Gaussian Bayesian Filter Using Power Moments","display_name":"A Multivariate Non-Gaussian Bayesian Filter Using Power Moments","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4310269181","doi":"https://doi.org/10.48550/arxiv.2211.13374"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.13374","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2211.13374","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5008175920","display_name":"Guangyu Wu","orcid":"https://orcid.org/0000-0002-5660-1249"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wu, Guangyu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5055347602","display_name":"Anders Lindquist","orcid":"https://orcid.org/0000-0002-2681-8383"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lindquist, Anders","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.640014,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":60,"max":70},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11303","display_name":"Bayesian Modeling and Causal Inference","score":0.8536,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11303","display_name":"Bayesian Modeling and Causal Inference","score":0.8536,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11871","display_name":"Advanced Statistical Methods and Models","score":0.8413,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10640","display_name":"Spectroscopy and Chemometric Analyses","score":0.7922,"subfield":{"id":"https://openalex.org/subfields/1602","display_name":"Analytical Chemistry"},"field":{"id":"https://openalex.org/fields/16","display_name":"Chemistry"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/parametrization","display_name":"Parametrization (atmospheric modeling)","score":0.67482924},{"id":"https://openalex.org/keywords/univariate","display_name":"Univariate","score":0.6282357}],"concepts":[{"id":"https://openalex.org/C202887219","wikidata":"https://www.wikidata.org/wiki/Q3895221","display_name":"Parametrization (atmospheric modeling)","level":3,"score":0.67482924},{"id":"https://openalex.org/C199163554","wikidata":"https://www.wikidata.org/wiki/Q1681619","display_name":"Univariate","level":3,"score":0.6282357},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.5856525},{"id":"https://openalex.org/C106131492","wikidata":"https://www.wikidata.org/wiki/Q3072260","display_name":"Filter (signal processing)","level":2,"score":0.56703657},{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.5582482},{"id":"https://openalex.org/C28826006","wikidata":"https://www.wikidata.org/wiki/Q33521","display_name":"Applied mathematics","level":1,"score":0.50861967},{"id":"https://openalex.org/C161584116","wikidata":"https://www.wikidata.org/wiki/Q1952580","display_name":"Multivariate statistics","level":2,"score":0.48314804},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.4687042},{"id":"https://openalex.org/C179254644","wikidata":"https://www.wikidata.org/wiki/Q13222844","display_name":"Moment (physics)","level":2,"score":0.45493656},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.38724265},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.34964615},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.32853597},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.15408415},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.09745374},{"id":"https://openalex.org/C74650414","wikidata":"https://www.wikidata.org/wiki/Q11397","display_name":"Classical mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.0},{"id":"https://openalex.org/C74902906","wikidata":"https://www.wikidata.org/wiki/Q1190858","display_name":"Radiative transfer","level":2,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.13374","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2211.13374","pdf_url":"http://arxiv.org/pdf/2211.13374","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2211.13374","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.13374","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W3121881699","https://openalex.org/W2889939530","https://openalex.org/W2748838164","https://openalex.org/W2399195672","https://openalex.org/W2122079181","https://openalex.org/W2066015000","https://openalex.org/W2049578243","https://openalex.org/W2000145235","https://openalex.org/W1985848810","https://openalex.org/W1828158523"],"abstract_inverted_index":{"In":[0],"this":[1,28],"paper,":[2],"we":[3,81],"extend":[4],"our":[5,136,143],"results":[6,123],"on":[7,79,98,115,124],"the":[8,17,39,55,66,70,83,88,92,104,113,119,140,145,149,153,158,169],"univariate":[9],"non-Gaussian":[10,105],"Bayesian":[11,106,155],"filter":[12,49,147,156],"using":[13],"power":[14],"moments":[15,86],"to":[16,72,103,111,134],"multivariate":[18,129,154],"systems,":[19],"which":[20,42,166],"can":[21],"be":[22],"either":[23],"linear":[24],"or":[25],"nonlinear.":[26],"Doing":[27],"introduces":[29],"several":[30],"challenging":[31],"problems,":[32],"for":[33],"example":[34],"a":[35,46,63,163],"positive":[36],"parametrization":[37,64,117],"of":[38,48,54,65,85,87,118,128,142],"density":[40,67,89,94,130],"surrogate,":[41],"is":[43,109,148],"not":[44],"only":[45,167],"problem":[47,108],"design,":[50],"but":[51],"also":[52],"one":[53,151],"multiple":[56],"dimensional":[57],"Hamburger":[58],"moment":[59],"problem.":[60],"We":[61],"propose":[62],"surrogate":[68],"with":[69,157],"proofs":[71],"its":[73],"existence,":[74],"Positivstellensatz":[75],"and":[76,100],"uniqueness.":[77],"Based":[78],"it,":[80],"analyze":[82],"errors":[84],"estimates":[90],"by":[91],"proposed":[93,110,137,146],"surrogate.":[95],"A":[96],"discussion":[97],"continuous":[99,116,164],"discrete":[101],"treatments":[102],"filtering":[107],"motivate":[112],"research":[114],"system":[120,159],"state.":[121],"Simulation":[122],"estimating":[125],"different":[126],"types":[127],"functions":[131],"are":[132],"given":[133],"validate":[135],"filter.":[138],"To":[139],"best":[141],"knowledge,":[144],"first":[150],"implementing":[152],"state":[160],"parameterized":[161],"as":[162],"function,":[165],"requires":[168],"true":[170],"states":[171],"being":[172],"Lebesgue":[173],"integrable.":[174]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4310269181","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2025-01-06T19:34:27.600311","created_date":"2022-11-30"}