{"id":"https://openalex.org/W4309801942","doi":"https://doi.org/10.48550/arxiv.2211.11300","title":"Multi-Level Knowledge Distillation for Out-of-Distribution Detection in Text","display_name":"Multi-Level Knowledge Distillation for Out-of-Distribution Detection in Text","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4309801942","doi":"https://doi.org/10.48550/arxiv.2211.11300"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.11300","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2211.11300","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5024011052","display_name":"Qianhui Wu","orcid":"https://orcid.org/0000-0001-9146-0675"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wu, Qianhui","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5070156365","display_name":"Huiqiang Jiang","orcid":"https://orcid.org/0000-0002-1327-4882"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jiang, Huiqiang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5027688515","display_name":"Haonan Yin","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yin, Haonan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5015011965","display_name":"B\u00f6rje F. Karlsson","orcid":"https://orcid.org/0000-0001-8925-360X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Karlsson, Borje F.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5090151187","display_name":"Chin-Yew Lin","orcid":"https://orcid.org/0000-0002-0798-6365"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lin, Chin-Yew","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9975,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9975,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10664","display_name":"Sentiment Analysis and Opinion Mining","score":0.9846,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11550","display_name":"Text and Document Classification Technologies","score":0.9612,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/perplexity","display_name":"Perplexity","score":0.8697579},{"id":"https://openalex.org/keywords/representation","display_name":"Representation","score":0.5948296},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.54258114},{"id":"https://openalex.org/keywords/regularization","display_name":"Regularization","score":0.44460577}],"concepts":[{"id":"https://openalex.org/C100279451","wikidata":"https://www.wikidata.org/wiki/Q372193","display_name":"Perplexity","level":3,"score":0.8697579},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.72702825},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6365886},{"id":"https://openalex.org/C2776359362","wikidata":"https://www.wikidata.org/wiki/Q2145286","display_name":"Representation (politics)","level":3,"score":0.5948296},{"id":"https://openalex.org/C137293760","wikidata":"https://www.wikidata.org/wiki/Q3621696","display_name":"Language model","level":2,"score":0.5698928},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.54258114},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5318365},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.50868493},{"id":"https://openalex.org/C2776135515","wikidata":"https://www.wikidata.org/wiki/Q17143721","display_name":"Regularization (linguistics)","level":2,"score":0.44460577},{"id":"https://openalex.org/C204030448","wikidata":"https://www.wikidata.org/wiki/Q101017","display_name":"Distillation","level":2,"score":0.4322008},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C94625758","wikidata":"https://www.wikidata.org/wiki/Q7163","display_name":"Politics","level":2,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C178790620","wikidata":"https://www.wikidata.org/wiki/Q11351","display_name":"Organic chemistry","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.11300","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2211.11300","pdf_url":"http://arxiv.org/pdf/2211.11300","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2211.11300","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.11300","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/4","score":0.86,"display_name":"Quality education"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4322096525","https://openalex.org/W4287323699","https://openalex.org/W4281893144","https://openalex.org/W2902731467","https://openalex.org/W2787311093","https://openalex.org/W2551914602","https://openalex.org/W2252095989","https://openalex.org/W2169518243","https://openalex.org/W2105076537","https://openalex.org/W2084531783"],"abstract_inverted_index":{"Self-supervised":[0],"representation":[1,118],"learning":[2],"has":[3],"proved":[4],"to":[5,90,114,142,211],"be":[6],"a":[7,26,33,68,84,92,108,139],"valuable":[8],"component":[9],"for":[10,173],"out-of-distribution":[11],"(OoD)":[12],"detection":[13,64],"with":[14,151],"only":[15,162],"the":[16,43,47,58,88,98,102,117,121,127,133,147,152,158,195,231,235],"texts":[17],"of":[18,61,120],"in-distribution":[19],"(ID)":[20],"examples.":[21,100],"These":[22],"approaches":[23],"either":[24],"train":[25],"language":[27,35,48],"model":[28,36,49,86,96,160,226],"from":[29,155],"scratch":[30],"or":[31],"fine-tune":[32],"pre-trained":[34],"using":[37],"ID":[38,99,134,148,163],"examples,":[39],"and":[40,66,190,218],"then":[41],"take":[42],"perplexity":[44],"output":[45],"by":[46,216],"as":[50,87,207],"OoD":[51,63,144,174],"scores.":[52],"In":[53,124],"this":[54,125],"paper,":[55],"we":[56,82,106],"analyze":[57],"complementary":[59],"characteristics":[60],"both":[62],"methods":[65],"propose":[67],"multi-level":[69],"knowledge":[70],"distillation":[71,112],"approach":[72],"that":[73,194,224],"integrates":[74],"their":[75,79],"strengths":[76],"while":[77,137],"mitigating":[78],"limitations.":[80],"Specifically,":[81],"use":[83],"fine-tuned":[85],"teacher":[89,122],"teach":[91],"randomly":[93],"initialized":[94],"student":[95,129,159],"on":[97,234],"Besides":[101],"prediction":[103],"layer":[104,111],"distillation,":[105],"present":[107],"similarity-based":[109],"intermediate":[110],"method":[113,197],"thoroughly":[115],"explore":[116,204],"space":[119],"model.":[123],"way,":[126],"learned":[128],"can":[130],"better":[131],"represent":[132],"data":[135,149],"manifold":[136,150],"gaining":[138],"stronger":[140],"ability":[141],"map":[143],"examples":[145,164],"outside":[146],"regularization":[153],"inherited":[154],"pre-training.":[156],"Besides,":[157],"sees":[161],"during":[165],"parameter":[166],"learning,":[167],"further":[168],"promoting":[169],"more":[170],"distinguishable":[171],"features":[172],"detection.":[175],"We":[176,202],"conduct":[177],"extensive":[178],"experiments":[179],"over":[180],"multiple":[181],"benchmark":[182],"datasets,":[183],"i.e.,":[184],"CLINC150,":[185],"SST,":[186],"ROSTD,":[187],"20":[188],"NewsGroups,":[189],"AG":[191],"News;":[192],"showing":[193],"proposed":[196],"yields":[198],"new":[199],"state-of-the-art":[200],"performance.":[201],"also":[203],"its":[205],"application":[206],"an":[208],"AIGC":[209],"detector":[210],"distinguish":[212],"between":[213],"answers":[214],"generated":[215],"ChatGPT":[217,237],"human":[219,228],"experts.":[220],"It":[221],"is":[222],"observed":[223],"our":[225],"exceeds":[227],"evaluators":[229],"in":[230],"pair-expert":[232],"task":[233],"Human":[236],"Comparison":[238],"Corpus.":[239]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4309801942","counts_by_year":[],"updated_date":"2024-12-15T18:52:15.752668","created_date":"2022-11-29"}