{"id":"https://openalex.org/W4320858992","doi":"https://doi.org/10.48550/arxiv.2211.11186","title":"DualApp: Tight Over-Approximation for Neural Network Robustness Verification via Under-Approximation","display_name":"DualApp: Tight Over-Approximation for Neural Network Robustness Verification via Under-Approximation","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4320858992","doi":"https://doi.org/10.48550/arxiv.2211.11186"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.11186","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2211.11186","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101728011","display_name":"Yiting Wu","orcid":"https://orcid.org/0000-0003-3913-0657"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wu, Yiting","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102797016","display_name":"Zhaodi Zhang","orcid":"https://orcid.org/0000-0002-0230-0301"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Zhaodi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5086079123","display_name":"Zhiyi Xue","orcid":"https://orcid.org/0000-0002-1357-202X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xue, Zhiyi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100330142","display_name":"Si Liu","orcid":"https://orcid.org/0000-0003-3578-7432"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Liu, Si","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5100402983","display_name":"Min Zhang","orcid":"https://orcid.org/0000-0003-1938-2902"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Min","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12026","display_name":"Explainable Artificial Intelligence (XAI)","score":0.9933,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9926,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.7618196},{"id":"https://openalex.org/keywords/function-approximation","display_name":"Function Approximation","score":0.4760751},{"id":"https://openalex.org/keywords/soundness","display_name":"Soundness","score":0.46069667}],"concepts":[{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.7618196},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.67946994},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5833665},{"id":"https://openalex.org/C148764684","wikidata":"https://www.wikidata.org/wiki/Q621751","display_name":"Approximation algorithm","level":2,"score":0.5781123},{"id":"https://openalex.org/C48044578","wikidata":"https://www.wikidata.org/wiki/Q727490","display_name":"Scalability","level":2,"score":0.56619143},{"id":"https://openalex.org/C41045048","wikidata":"https://www.wikidata.org/wiki/Q202843","display_name":"Linear programming","level":2,"score":0.5522136},{"id":"https://openalex.org/C160824197","wikidata":"https://www.wikidata.org/wiki/Q2071054","display_name":"Linear approximation","level":3,"score":0.4778737},{"id":"https://openalex.org/C91873725","wikidata":"https://www.wikidata.org/wiki/Q3445816","display_name":"Function approximation","level":3,"score":0.4760751},{"id":"https://openalex.org/C39920170","wikidata":"https://www.wikidata.org/wiki/Q693083","display_name":"Soundness","level":2,"score":0.46069667},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.43482384},{"id":"https://openalex.org/C122383733","wikidata":"https://www.wikidata.org/wiki/Q865920","display_name":"Approximation error","level":2,"score":0.41478148},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.35272813},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.32950485},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.23089081},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C158622935","wikidata":"https://www.wikidata.org/wiki/Q660848","display_name":"Nonlinear system","level":2,"score":0.0},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.11186","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2211.11186","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.11186","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4239251873","https://openalex.org/W3177870706","https://openalex.org/W3113145869","https://openalex.org/W2768028474","https://openalex.org/W2513431008","https://openalex.org/W2160821628","https://openalex.org/W2097120783","https://openalex.org/W2087686193","https://openalex.org/W2073744204","https://openalex.org/W189995875"],"abstract_inverted_index":{"The":[0,158,198],"robustness":[1,25],"of":[2,108,188],"neural":[3,38,193],"networks":[4,39,194],"is":[5,43],"fundamental":[6],"to":[7,19,68,87,143,211,214],"the":[8,29,33,48,70,80,105,122,162,165,169,205,215],"hosting":[9],"system's":[10],"reliability":[11],"and":[12,95,147,155,180,191],"security.":[13],"Formal":[14],"verification":[15,30,49,216],"has":[16],"been":[17,66],"proven":[18],"be":[20,129],"effective":[21],"in":[22,37,100],"providing":[23],"provable":[24],"guarantees.":[26],"To":[27],"improve":[28],"scalability,":[31],"over-approximating":[32],"non-linear":[34],"activation":[35,109],"functions":[36],"by":[40],"linear":[41,55],"constraints":[42],"widely":[44],"adopted,":[45],"which":[46],"transforms":[47],"problem":[50],"into":[51,175],"an":[52,97],"efficiently":[53],"solvable":[54],"programming":[56],"problem.":[57],"As":[58],"over-approximations":[59,146],"inevitably":[60],"introduce":[61],"overestimation,":[62],"many":[63],"efforts":[64],"have":[65,76],"dedicated":[67],"defining":[69,101],"tightest":[71,83],"possible":[72],"approximations.":[73],"Recent":[74],"studies":[75],"however":[77],"showed":[78],"that":[79,113,202],"existing":[81,114],"so-called":[82],"approximations":[84],"are":[85],"superior":[86],"each":[88],"other.":[89],"In":[90],"this":[91],"paper":[92],"we":[93],"identify":[94],"report":[96],"crucial":[98],"factor":[99],"tight":[102,124,130,145],"approximations,":[103],"namely":[104],"approximation":[106,125],"domains":[107],"functions.":[110],"We":[111,135,171],"observe":[112],"approaches":[115],"only":[116],"rely":[117],"on":[118,131,153,184],"overestimated":[119,159],"domains,":[120],"while":[121,164],"corresponding":[123],"may":[126],"not":[127],"necessarily":[128],"its":[132],"actual":[133],"domain.":[134],"propose":[136],"a":[137,176,185],"novel":[138],"under-approximation-guided":[139],"approach,":[140],"called":[141,178],"dual-approximation,":[142],"define":[144],"two":[148],"complementary":[149],"under-approximation":[150],"algorithms":[151],"based":[152],"sampling":[154],"gradient":[156],"descent.":[157],"domain":[160],"guarantees":[161],"soundness":[163],"underestimated":[166],"one":[167],"guides":[168],"tightness.":[170],"implement":[172],"our":[173],"approach":[174],"tool":[177],"DualApp":[179,203],"extensively":[181],"evaluate":[182],"it":[183],"comprehensive":[186],"benchmark":[187],"84":[189],"collected":[190],"trained":[192],"with":[195,209],"different":[196],"architectures.":[197],"experimental":[199],"results":[200],"show":[201],"outperforms":[204],"state-of-the-art":[206],"approximation-based":[207],"approaches,":[208],"up":[210],"71.22%":[212],"improvement":[213],"result.":[217]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4320858992","counts_by_year":[],"updated_date":"2024-12-13T03:24:35.549500","created_date":"2023-02-16"}