{"id":"https://openalex.org/W4309799449","doi":"https://doi.org/10.48550/arxiv.2211.10887","title":"Differential Privacy from Locally Adjustable Graph Algorithms: $k$-Core Decomposition, Low Out-Degree Ordering, and Densest Subgraphs","display_name":"Differential Privacy from Locally Adjustable Graph Algorithms: $k$-Core Decomposition, Low Out-Degree Ordering, and Densest Subgraphs","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4309799449","doi":"https://doi.org/10.48550/arxiv.2211.10887"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.10887","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2211.10887","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5065818820","display_name":"Laxman Dhulipala","orcid":"https://orcid.org/0000-0003-0685-064X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Dhulipala, Laxman","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5070332039","display_name":"Quanquan C. Liu","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Liu, Quanquan C.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5080839778","display_name":"Sofya Raskhodnikova","orcid":"https://orcid.org/0000-0002-4902-050X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Raskhodnikova, Sofya","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5039516597","display_name":"Jessica Shi","orcid":"https://orcid.org/0000-0003-4485-5492"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Shi, Jessica","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5051583907","display_name":"Julian Shun","orcid":"https://orcid.org/0000-0001-6163-6625"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Shun, Julian","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5063461740","display_name":"Shangdi Yu","orcid":"https://orcid.org/0000-0002-8907-692X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yu, Shangdi","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Technologies in Data","score":0.9961,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Technologies in Data","score":0.9961,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/differential-privacy","display_name":"Differential Privacy","score":0.6849357},{"id":"https://openalex.org/keywords/degree","display_name":"Degree (music)","score":0.5230711}],"concepts":[{"id":"https://openalex.org/C42747912","wikidata":"https://www.wikidata.org/wiki/Q1048447","display_name":"Multiplicative function","level":2,"score":0.7175988},{"id":"https://openalex.org/C23130292","wikidata":"https://www.wikidata.org/wiki/Q5275358","display_name":"Differential privacy","level":2,"score":0.6849357},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.5819684},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.54165864},{"id":"https://openalex.org/C2775997480","wikidata":"https://www.wikidata.org/wiki/Q586277","display_name":"Degree (music)","level":2,"score":0.5230711},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.46923643},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.45125875},{"id":"https://openalex.org/C118615104","wikidata":"https://www.wikidata.org/wiki/Q121416","display_name":"Discrete mathematics","level":1,"score":0.4253735},{"id":"https://openalex.org/C148764684","wikidata":"https://www.wikidata.org/wiki/Q621751","display_name":"Approximation algorithm","level":2,"score":0.41989952},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.37367558},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.3361376},{"id":"https://openalex.org/C24890656","wikidata":"https://www.wikidata.org/wiki/Q82811","display_name":"Acoustics","level":1,"score":0.0},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.10887","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2211.10887","pdf_url":"http://arxiv.org/pdf/2211.10887","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2211.10887","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.10887","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W798507144","https://openalex.org/W4315488958","https://openalex.org/W3038283795","https://openalex.org/W2964481303","https://openalex.org/W2734500670","https://openalex.org/W2604501336","https://openalex.org/W2571704763","https://openalex.org/W2558166297","https://openalex.org/W2315671126","https://openalex.org/W1751413323"],"abstract_inverted_index":{"Differentially":[0],"private":[1,65,89,132,187,203,236,240],"algorithms":[2,13,62,76,80,190],"allow":[3],"large-scale":[4],"data":[5,16],"analytics":[6],"while":[7,191],"preserving":[8],"user":[9],"privacy.":[10],"Designing":[11],"such":[12],"for":[14,112,206],"graph":[15,61,66,75,165],"is":[17,93,155,232],"gaining":[18],"importance":[19],"with":[20,223],"the":[21,46,104,156,159,163,179,184,214,233],"growth":[22],"of":[23,39,48,81,98,109,115,139,145,158,183],"large":[24],"networks":[25],"that":[26,79,100,135,141,238],"model":[27],"various":[28],"(sensitive)":[29],"relationships":[30],"between":[31,56],"individuals.":[32],"While":[33],"there":[34],"exists":[35],"a":[36,54,96,113,137,143,175,193],"rich":[37],"history":[38],"important":[40],"literature":[41],"in":[42,103,162],"this":[43,69,82],"space,":[44],"to":[45],"best":[47],"our":[49],"knowledge,":[50],"no":[51],"results":[52,99],"formalize":[53],"relationship":[55],"certain":[57],"parallel":[58],"and":[59,63,77,106,123,226],"distributed":[60],"differentially":[64,88,131,202,235],"analysis.":[67],"In":[68],"paper,":[70],"we":[71,101,127,197],"define":[72],"\\emph{locally":[73],"adjustable}":[74],"show":[78],"type":[83],"can":[84],"be":[85],"transformed":[86],"into":[87],"algorithms.":[90],"Our":[91,209],"formalization":[92],"motivated":[94],"by":[95],"set":[97],"present":[102,198],"central":[105],"local":[107],"models":[108],"differential":[110],"privacy":[111],"number":[114],"problems,":[116],"including":[117],"$k$-core":[118,207,241],"decomposition,":[119],"low":[120],"out-degree":[121],"ordering,":[122],"densest":[124,160,188],"subgraphs.":[125],"First,":[126],"design":[128],"an":[129,199],"$\\varepsilon$-edge":[130],"(DP)":[133],"algorithm":[134,173,205,211,237],"returns":[136],"subset":[138],"nodes":[140],"induce":[142],"subgraph":[144,161,189],"density":[146,157],"at":[147],"least":[148],"$\\frac{D^*}{1+\\eta}":[149],"-":[150],"O\\left(\\text{poly}(\\log":[151],"n)/\\varepsilon\\right),$":[152],"where":[153],"$D^*$":[154],"input":[164],"(for":[166,217],"any":[167,218],"constant":[168,219],"$\\eta":[169,220],">":[170,221],"0$).":[171],"This":[172,231],"achieves":[174],"two-fold":[176],"improvement":[177],"on":[178],"multiplicative":[180,225],"approximation":[181],"factor":[182],"previously":[185],"best-known":[186],"maintaining":[192],"near-linear":[194],"runtime.":[195],"Then,":[196],"$\\varepsilon$-locally":[200],"edge":[201],"(LEDP)":[204],"decompositions.":[208],"LEDP":[210],"provides":[212],"approximates":[213],"core":[215],"numbers":[216],"0$)":[222],"$(2+\\eta)$":[224],"$O\\left(\\text{poly}\\left(\\log":[227],"n\\right)/\\varepsilon\\right)$":[228],"additive":[229],"error.":[230],"first":[234],"outputs":[239],"decomposition":[242],"statistics.":[243]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4309799449","counts_by_year":[],"updated_date":"2024-12-09T21:38:18.223689","created_date":"2022-11-29"}