{"id":"https://openalex.org/W4309582924","doi":"https://doi.org/10.48550/arxiv.2211.09954","title":"Robust DNN Surrogate Models with Uncertainty Quantification via Adversarial Training","display_name":"Robust DNN Surrogate Models with Uncertainty Quantification via Adversarial Training","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4309582924","doi":"https://doi.org/10.48550/arxiv.2211.09954"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.09954","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2211.09954","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100633246","display_name":"Lixiang Zhang","orcid":"https://orcid.org/0000-0003-4075-6999"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Lixiang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5100405681","display_name":"Jia Li","orcid":"https://orcid.org/0000-0002-3108-8645"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Jia","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":59},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9942,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9942,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10928","display_name":"Probabilistic and Robust Engineering Design","score":0.9852,"subfield":{"id":"https://openalex.org/subfields/1804","display_name":"Statistics, Probability and Uncertainty"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11206","display_name":"Model Reduction and Neural Networks","score":0.9677,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/surrogate-model","display_name":"Surrogate model","score":0.833662},{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.75534034},{"id":"https://openalex.org/keywords/uncertainty-quantification","display_name":"Uncertainty Quantification","score":0.44991514}],"concepts":[{"id":"https://openalex.org/C131675550","wikidata":"https://www.wikidata.org/wiki/Q7646884","display_name":"Surrogate model","level":2,"score":0.833662},{"id":"https://openalex.org/C149810388","wikidata":"https://www.wikidata.org/wiki/Q5374873","display_name":"Emulation","level":2,"score":0.81521165},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7769998},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.75534034},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.6316666},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6198947},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.46917087},{"id":"https://openalex.org/C32230216","wikidata":"https://www.wikidata.org/wiki/Q7882499","display_name":"Uncertainty quantification","level":2,"score":0.44991514},{"id":"https://openalex.org/C19499675","wikidata":"https://www.wikidata.org/wiki/Q232207","display_name":"Monte Carlo method","level":2,"score":0.4105001},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.110017896},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.08222467},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0},{"id":"https://openalex.org/C50522688","wikidata":"https://www.wikidata.org/wiki/Q189833","display_name":"Economic growth","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.09954","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2211.09954","pdf_url":"http://arxiv.org/pdf/2211.09954","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2211.09954","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.09954","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4388965878","https://openalex.org/W4388873753","https://openalex.org/W4312678460","https://openalex.org/W3201166396","https://openalex.org/W3158153085","https://openalex.org/W3133763041","https://openalex.org/W3016372110","https://openalex.org/W2911578761","https://openalex.org/W2791576819","https://openalex.org/W2790762380"],"abstract_inverted_index":{"For":[0],"computational":[1],"efficiency,":[2],"surrogate":[3,51,58,97,158,171],"models":[4,59,172],"have":[5,60],"been":[6],"used":[7],"to":[8,76,117,152],"emulate":[9],"mathematical":[10],"simulators":[11],"for":[12,21,63,89],"physical":[13],"or":[14],"biological":[15],"processes.":[16],"High-speed":[17],"simulation":[18,28],"is":[19,29,46,70,74,101],"crucial":[20],"conducting":[22],"uncertainty":[23],"quantification":[24],"(UQ)":[25],"when":[26,78],"the":[27,38,86,93,99,110,114,134,154,167,170],"repeated":[30],"over":[31],"many":[32],"randomly":[33],"sampled":[34],"input":[35,79,118],"points":[36],"(aka,":[37],"Monte":[39],"Carlo":[40],"method).":[41],"In":[42,92,129],"some":[43],"cases,":[44],"UQ":[45],"only":[47],"feasible":[48],"with":[49],"a":[50,104],"model.":[52],"Recently,":[53],"Deep":[54],"Neural":[55],"Network":[56],"(DNN)":[57],"gained":[61],"popularity":[62],"their":[64],"hard-to-match":[65],"emulation":[66,127,175],"accuracy.":[67,176],"However,":[68],"it":[69],"well-known":[71],"that":[72,162],"DNN":[73,157],"prone":[75],"errors":[77],"data":[80],"are":[81],"perturbed":[82],"in":[83,149],"particular":[84],"ways,":[85],"very":[87],"motivation":[88],"adversarial":[90,150],"training.":[91],"usage":[94],"scenario":[95],"of":[96,103,109,113,136,156,169],"models,":[98],"concern":[100],"less":[102],"deliberate":[105],"attack":[106],"but":[107],"more":[108],"high":[111],"sensitivity":[112],"DNN's":[115],"accuracy":[116],"directions,":[119],"an":[120],"issue":[121,138],"largely":[122],"ignored":[123],"by":[124],"researchers":[125],"using":[126],"models.":[128,159],"this":[130,137],"paper,":[131],"we":[132,146],"show":[133],"severity":[135],"through":[139],"empirical":[140],"studies":[141],"and":[142],"hypothesis":[143],"testing.":[144],"Furthermore,":[145],"adopt":[147],"methods":[148],"training":[151],"enhance":[153],"robustness":[155,168],"Experiments":[160],"demonstrate":[161],"our":[163],"approaches":[164],"significantly":[165],"improve":[166],"without":[173],"compromising":[174]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4309582924","counts_by_year":[],"updated_date":"2025-03-05T08:55:31.142160","created_date":"2022-11-28"}