{"id":"https://openalex.org/W4309299652","doi":"https://doi.org/10.48550/arxiv.2211.08262","title":"A mixed-categorical correlation kernel for Gaussian process","display_name":"A mixed-categorical correlation kernel for Gaussian process","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4309299652","doi":"https://doi.org/10.48550/arxiv.2211.08262"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.08262","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":null,"is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"journal-article","indexed_in":["datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2211.08262","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5020216607","display_name":"P. Saves","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Saves, P.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5002768919","display_name":"Y. Diouane","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Diouane, Y.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5020784211","display_name":"N. Bartoli","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Bartoli, N.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5015690507","display_name":"T. Lefebvre","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lefebvre, T.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5005187572","display_name":"Joseph Morlier","orcid":"https://orcid.org/0000-0002-1511-2086"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Morlier, J.","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12814","display_name":"Gaussian Processes and Bayesian Inference","score":0.9779,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12814","display_name":"Gaussian Processes and Bayesian Inference","score":0.9779,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.9444,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10640","display_name":"Spectroscopy and Chemometric Analyses","score":0.9045,"subfield":{"id":"https://openalex.org/subfields/1602","display_name":"Analytical Chemistry"},"field":{"id":"https://openalex.org/fields/16","display_name":"Chemistry"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/categorical-variable","display_name":"Categorical variable","score":0.8245586},{"id":"https://openalex.org/keywords/kernel","display_name":"Kernel (algebra)","score":0.66297615}],"concepts":[{"id":"https://openalex.org/C5274069","wikidata":"https://www.wikidata.org/wiki/Q2285707","display_name":"Categorical variable","level":2,"score":0.8245586},{"id":"https://openalex.org/C74193536","wikidata":"https://www.wikidata.org/wiki/Q574844","display_name":"Kernel (algebra)","level":2,"score":0.66297615},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.5208914},{"id":"https://openalex.org/C61326573","wikidata":"https://www.wikidata.org/wiki/Q1496376","display_name":"Gaussian process","level":3,"score":0.4933938},{"id":"https://openalex.org/C28826006","wikidata":"https://www.wikidata.org/wiki/Q33521","display_name":"Applied mathematics","level":1,"score":0.457955},{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.44114935},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.4362144},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.4211275},{"id":"https://openalex.org/C155512373","wikidata":"https://www.wikidata.org/wiki/Q287450","display_name":"Residual","level":2,"score":0.41272938},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.3697917},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.32063764},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.24726394},{"id":"https://openalex.org/C118615104","wikidata":"https://www.wikidata.org/wiki/Q121416","display_name":"Discrete mathematics","level":1,"score":0.09127182},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.08262","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2211.08262","pdf_url":"http://arxiv.org/pdf/2211.08262","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2211.08262","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.08262","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":null,"is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":["https://openalex.org/W4380738484"],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W65104662","https://openalex.org/W4386799044","https://openalex.org/W4297454206","https://openalex.org/W2773208253","https://openalex.org/W2560646951","https://openalex.org/W2362286668","https://openalex.org/W2169866437","https://openalex.org/W2133382151","https://openalex.org/W1964286703","https://openalex.org/W1871748041"],"abstract_inverted_index":{"Recently,":[0],"there":[1],"has":[2],"been":[3],"a":[4,41,53,70,101,105],"growing":[5],"interest":[6],"for":[7],"mixed-categorical":[8,63],"meta-models":[9],"based":[10,36,84],"on":[11,89],"Gaussian":[12],"process":[13],"(GP)":[14],"surrogates.":[15],"In":[16,48],"this":[17,49],"setting,":[18],"several":[19],"existing":[20],"approaches":[21],"use":[22],"different":[23],"strategies":[24],"either":[25],"by":[26,39],"using":[27,40],"continuous":[28,31,58,78],"kernels":[29,60],"(e.g.,":[30],"relaxation":[32,79],"and":[33,80,92,104],"Gower":[34,82],"distance":[35,83],"GP)":[37],"or":[38],"direct":[42],"estimation":[43],"of":[44],"the":[45,77,81,110,120],"correlation":[46],"matrix.":[47],"paper,":[50],"we":[51],"present":[52],"kernel-based":[54,112],"approach":[55],"that":[56,74,95],"extends":[57],"exponential":[59],"to":[61,69],"handle":[62],"variables.":[64],"The":[65],"proposed":[66,97],"kernel":[67],"leads":[68],"new":[71],"GP":[72,85,98],"surrogate":[73],"generalizes":[75],"both":[76,90],"models.":[86,114],"We":[87],"demonstrate,":[88],"analytical":[91],"engineering":[93],"problems,":[94],"our":[96],"model":[99],"gives":[100],"higher":[102],"likelihood":[103],"smaller":[106],"residual":[107],"error":[108],"than":[109],"other":[111],"state-of-the-art":[113],"Our":[115],"method":[116],"is":[117],"available":[118],"in":[119],"open-source":[121],"software":[122],"SMT.":[123]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4309299652","counts_by_year":[],"updated_date":"2025-01-22T17:48:04.613919","created_date":"2022-11-25"}