{"id":"https://openalex.org/W4309203901","doi":"https://doi.org/10.48550/arxiv.2211.07928","title":"False: False Negative Samples Aware Contrastive Learning for Semantic Segmentation of High-Resolution Remote Sensing Image","display_name":"False: False Negative Samples Aware Contrastive Learning for Semantic Segmentation of High-Resolution Remote Sensing Image","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4309203901","doi":"https://doi.org/10.48550/arxiv.2211.07928"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.07928","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":null,"is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"journal-article","indexed_in":["datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2211.07928","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100751313","display_name":"Zhaoyang Zhang","orcid":"https://orcid.org/0009-0001-2135-5842"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Zhaoyang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5070586569","display_name":"Xuying Wang","orcid":"https://orcid.org/0000-0001-7669-7658"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Xuying","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5114240082","display_name":"Xiaoming Mei","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Mei, Xiaoming","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5069479267","display_name":"Chao Tao","orcid":"https://orcid.org/0000-0001-8052-6827"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Tao, Chao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5100398353","display_name":"Haifeng Li","orcid":"https://orcid.org/0000-0003-1173-6593"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Haifeng","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":59},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9938,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9938,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10689","display_name":"Remote-Sensing Image Classification","score":0.9927,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.9803,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/sample","display_name":"Sample (material)","score":0.57296383}],"concepts":[{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.6987765},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.63693726},{"id":"https://openalex.org/C165838908","wikidata":"https://www.wikidata.org/wiki/Q736777","display_name":"Calibration","level":2,"score":0.609447},{"id":"https://openalex.org/C198531522","wikidata":"https://www.wikidata.org/wiki/Q485146","display_name":"Sample (material)","level":2,"score":0.57296383},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.56733507},{"id":"https://openalex.org/C138268822","wikidata":"https://www.wikidata.org/wiki/Q1051925","display_name":"Resolution (logic)","level":2,"score":0.50760925},{"id":"https://openalex.org/C64543145","wikidata":"https://www.wikidata.org/wiki/Q162942","display_name":"Intersection (aeronautics)","level":2,"score":0.503478},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.46304873},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.43227357},{"id":"https://openalex.org/C184337299","wikidata":"https://www.wikidata.org/wiki/Q1437428","display_name":"Semantics (computer science)","level":2,"score":0.42715448},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.32589233},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.24190748},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.23349842},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.123809695},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.0},{"id":"https://openalex.org/C97355855","wikidata":"https://www.wikidata.org/wiki/Q11473","display_name":"Thermodynamics","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C146978453","wikidata":"https://www.wikidata.org/wiki/Q3798668","display_name":"Aerospace engineering","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.07928","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2211.07928","pdf_url":"http://arxiv.org/pdf/2211.07928","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2211.07928","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.07928","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":null,"is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":["https://openalex.org/W4313119615"],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4292672442","https://openalex.org/W4235810826","https://openalex.org/W3112772842","https://openalex.org/W2941610985","https://openalex.org/W2791431590","https://openalex.org/W2362101859","https://openalex.org/W2350688482","https://openalex.org/W2348909947","https://openalex.org/W2122135111","https://openalex.org/W2053575972"],"abstract_inverted_index":{"The":[0,195,253],"existing":[1],"SSCL":[2,49,96,193,233],"of":[3,20,27,41,91,102,126,131,137,148,174,192],"RSI":[4,21,29,34,162,177],"is":[5,98,202,212,223,256],"built":[6],"based":[7],"on":[8,160,198,206,208,216,219,227],"constructing":[9],"positive":[10,42,57],"and":[11,24,39,43,61,128,145,218,241],"negative":[12,44,51,107],"sample":[13,68,108],"pairs.":[14],"However,":[15],"due":[16],"to":[17,111,118,238],"the":[18,25,28,32,37,48,67,88,95,100,120,140,151,168,172,175,183,232,236,243,247],"richness":[19],"ground":[22],"objects":[23],"complexity":[26],"contextual":[30],"semantics,":[31],"same":[33],"patches":[35],"have":[36],"coexistence":[38],"imbalance":[40],"samples,":[45],"which":[46,187],"causing":[47],"pushing":[50,56],"samples":[52,58],"far":[53,59],"away":[54],"while":[55],"away,":[60],"vice":[62],"versa.":[63],"We":[64,133],"call":[65],"this":[66,74,222],"confounding":[69],"issue":[70],"(SCI).":[71],"To":[72],"solve":[73],"problem,":[75],"we":[76,114],"propose":[77],"a":[78],"False":[79],"negAtive":[80],"sampLes":[81],"aware":[82],"contraStive":[83],"lEarning":[84],"model":[85,234],"(FALSE)":[86],"for":[87,105],"semantic":[89,163,178],"segmentation":[90,164,179],"high-resolution":[92],"RSIs.":[93],"Since":[94],"pretraining":[97],"unsupervised,":[99],"lack":[101],"definable":[103],"criteria":[104],"false":[106],"(FNS)":[109],"leads":[110],"theoretical":[112],"undecidability,":[113],"designed":[115],"two":[116],"steps":[117],"implement":[119],"FNS":[121,127,138,141,149,152,240],"approximation":[122],"determination:":[123],"coarse":[124,135],"determination":[125,136],"precise":[129],"calibration":[130,147,154],"FNS.":[132],"achieve":[134,146],"by":[139,150,204,214,225],"self-determination":[142],"(FNSD)":[143],"strategy":[144],"confidence":[153],"(FNCC)":[155],"loss":[156],"function.":[157],"Experimental":[158],"results":[159],"three":[161,185,189],"datasets":[165],"demonstrated":[166],"that":[167,231,242],"FALSE":[169,244],"effectively":[170,245],"improves":[171],"accuracy":[173],"downstream":[176],"task":[180],"compared":[181],"with":[182],"current":[184],"models,":[186],"represent":[188],"different":[190],"types":[191],"models.":[194],"mean":[196],"Intersection-over-Union":[197],"ISPRS":[199],"Potsdam":[200],"dataset":[201,211,221],"improved":[203,213,224],"0.7\\%":[205],"average;":[207,217],"CVPR":[209],"DGLC":[210],"12.28\\%":[215],"Xiangtan":[220],"1.17\\%":[226],"average.":[228],"This":[229],"indicates":[230],"has":[235],"ability":[237],"self-differentiate":[239],"mitigates":[246],"SCI":[248],"in":[249],"self-supervised":[250],"contrastive":[251],"learning.":[252],"source":[254],"code":[255],"available":[257],"at":[258],"https://github.com/GeoX-Lab/FALSE.":[259]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4309203901","counts_by_year":[],"updated_date":"2025-03-04T18:00:44.877656","created_date":"2022-11-24"}