{"id":"https://openalex.org/W4309130318","doi":"https://doi.org/10.48550/arxiv.2211.06689","title":"TINC: Tree-structured Implicit Neural Compression","display_name":"TINC: Tree-structured Implicit Neural Compression","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4309130318","doi":"https://doi.org/10.48550/arxiv.2211.06689"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.06689","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2211.06689","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5088530433","display_name":"Runzhao Yang","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yang, Runzhao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5090017071","display_name":"Tingxiong Xiao","orcid":"https://orcid.org/0000-0002-0943-4097"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xiao, Tingxiong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100294901","display_name":"Yuxiao Cheng","orcid":"https://orcid.org/0000-0002-9097-1454"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Cheng, Yuxiao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5051445938","display_name":"Jinli Suo","orcid":"https://orcid.org/0000-0002-3426-1634"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Suo, Jinli","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5080722708","display_name":"Qionghai Dai","orcid":"https://orcid.org/0000-0001-7043-3061"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Dai, Qionghai","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":59},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10531","display_name":"Advanced Vision and Imaging","score":0.9985,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10531","display_name":"Advanced Vision and Imaging","score":0.9985,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10688","display_name":"Image and Signal Denoising Methods","score":0.9955,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11019","display_name":"Image Enhancement Techniques","score":0.995,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/perceptron","display_name":"Perceptron","score":0.563453},{"id":"https://openalex.org/keywords/tree","display_name":"Tree (set theory)","score":0.4811074}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7863767},{"id":"https://openalex.org/C2776459999","wikidata":"https://www.wikidata.org/wiki/Q2119376","display_name":"Fidelity","level":2,"score":0.690717},{"id":"https://openalex.org/C152124472","wikidata":"https://www.wikidata.org/wiki/Q1204361","display_name":"Redundancy (engineering)","level":2,"score":0.6497978},{"id":"https://openalex.org/C165696696","wikidata":"https://www.wikidata.org/wiki/Q11287","display_name":"Exploit","level":2,"score":0.6017291},{"id":"https://openalex.org/C60908668","wikidata":"https://www.wikidata.org/wiki/Q690207","display_name":"Perceptron","level":3,"score":0.563453},{"id":"https://openalex.org/C113174947","wikidata":"https://www.wikidata.org/wiki/Q2859736","display_name":"Tree (set theory)","level":2,"score":0.4811074},{"id":"https://openalex.org/C78548338","wikidata":"https://www.wikidata.org/wiki/Q2493","display_name":"Data compression","level":2,"score":0.4775549},{"id":"https://openalex.org/C163797641","wikidata":"https://www.wikidata.org/wiki/Q2067937","display_name":"Tree structure","level":3,"score":0.44180638},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.43687144},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.43529284},{"id":"https://openalex.org/C180016635","wikidata":"https://www.wikidata.org/wiki/Q2712821","display_name":"Compression (physics)","level":2,"score":0.4295656},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.39729565},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.38651356},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.34008294},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.09037188},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.0},{"id":"https://openalex.org/C197855036","wikidata":"https://www.wikidata.org/wiki/Q380172","display_name":"Binary tree","level":2,"score":0.0},{"id":"https://openalex.org/C159985019","wikidata":"https://www.wikidata.org/wiki/Q181790","display_name":"Composite material","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.06689","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2211.06689","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.06689","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4380449851","https://openalex.org/W4318832338","https://openalex.org/W4248383205","https://openalex.org/W4234745530","https://openalex.org/W3125091513","https://openalex.org/W2916591301","https://openalex.org/W2381850946","https://openalex.org/W2231829109","https://openalex.org/W2146383839","https://openalex.org/W1919390113"],"abstract_inverted_index":{"Implicit":[0,73],"neural":[1],"representation":[2,80],"(INR)":[3],"can":[4,49,180,192],"describe":[5],"the":[6,58,86,105,122,132,141,152,173],"target":[7,59],"scenes":[8],"with":[9],"high":[10,177],"fidelity":[11,154],"using":[12],"a":[13,22,71,94],"small":[14],"number":[15],"of":[16,63,89,155,176],"parameters,":[17],"and":[18,35,61,84,109,143,157,166,179,186],"is":[19,31,37,175],"emerging":[20],"as":[21],"promising":[23],"data":[24,45,60,185],"compression":[25,153,161],"technique.":[26],"However,":[27],"limited":[28,64],"spectrum":[29],"coverage":[30],"intrinsic":[32],"to":[33,39,77,103,117,121],"INR,":[34,156],"it":[36],"non-trivial":[38],"remove":[40],"redundancy":[41],"in":[42,57,93,114],"diverse":[43],"complex":[44],"effectively.":[46],"Preliminary":[47],"studies":[48],"only":[50,130],"exploit":[51],"either":[52],"global":[53],"or":[54],"local":[55,82,91,107,142],"correlation":[56],"thus":[62],"performance.":[65],"In":[66],"this":[67],"paper,":[68],"we":[69,98],"propose":[70],"Tree-structured":[72],"Neural":[74],"Compression":[75],"(TINC)":[76],"conduct":[78],"compact":[79],"for":[81,183],"regions":[83],"extract":[85],"shared":[87],"features":[88],"these":[90,110],"representations":[92],"hierarchical":[95],"manner.":[96],"Specifically,":[97],"use":[99],"Multi-Layer":[100],"Perceptrons":[101],"(MLPs)":[102],"fit":[104],"partitioned":[106],"regions,":[108,136],"MLPs":[111],"are":[112],"organized":[113],"tree":[115],"structure":[116],"share":[118],"parameters":[119],"according":[120],"spatial":[123],"distance.":[124],"The":[125,189],"parameter":[126,187],"sharing":[127],"scheme":[128],"not":[129],"ensures":[131],"continuity":[133],"between":[134],"adjacent":[135],"but":[137],"also":[138],"jointly":[139],"removes":[140],"non-local":[144],"redundancy.":[145],"Extensive":[146],"experiments":[147],"show":[148],"that":[149],"TINC":[150],"improves":[151],"has":[158],"shown":[159],"impressive":[160],"capabilities":[162],"over":[163],"commercial":[164],"tools":[165],"other":[167],"deep":[168],"learning":[169],"based":[170],"methods.":[171],"Besides,":[172],"approach":[174],"flexibility":[178],"be":[181,193],"tailored":[182],"different":[184],"settings.":[188],"source":[190],"code":[191],"found":[194],"at":[195],"https://github.com/RichealYoung/TINC":[196],".":[197]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4309130318","counts_by_year":[],"updated_date":"2025-03-03T19:11:37.280943","created_date":"2022-11-23"}