{"id":"https://openalex.org/W4308759077","doi":"https://doi.org/10.48550/arxiv.2211.04952","title":"Graph Neural Networks with Adaptive Readouts","display_name":"Graph Neural Networks with Adaptive Readouts","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4308759077","doi":"https://doi.org/10.48550/arxiv.2211.04952"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.04952","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2211.04952","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5081668013","display_name":"David Buterez","orcid":"https://orcid.org/0000-0001-6558-0833"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Buterez, David","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5030485362","display_name":"Jon Paul Janet","orcid":"https://orcid.org/0000-0001-7825-4797"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Janet, Jon Paul","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5107385959","display_name":"Steven J. Kiddle","orcid":"https://orcid.org/0000-0003-4350-7437"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kiddle, Steven J.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5061934775","display_name":"Dino Ogli\u0107","orcid":"https://orcid.org/0000-0002-4728-9644"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Oglic, Dino","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5056748708","display_name":"P\u00edetro Li\u00f3","orcid":"https://orcid.org/0000-0002-0540-5053"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li\u00f2, Pietro","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":24,"citation_normalized_percentile":{"value":0.999669,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":96,"max":97},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11948","display_name":"Machine Learning in Materials Science","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/2505","display_name":"Materials Chemistry"},"field":{"id":"https://openalex.org/fields/25","display_name":"Materials Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11948","display_name":"Machine Learning in Materials Science","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/2505","display_name":"Materials Chemistry"},"field":{"id":"https://openalex.org/fields/25","display_name":"Materials Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10211","display_name":"Computational Drug Discovery Methods","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9948,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/representation","display_name":"Representation","score":0.47638386}],"concepts":[{"id":"https://openalex.org/C190470478","wikidata":"https://www.wikidata.org/wiki/Q2370229","display_name":"Invariant (physics)","level":2,"score":0.6408328},{"id":"https://openalex.org/C21308566","wikidata":"https://www.wikidata.org/wiki/Q7169365","display_name":"Permutation (music)","level":2,"score":0.62277573},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5873945},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.5218731},{"id":"https://openalex.org/C2776359362","wikidata":"https://www.wikidata.org/wiki/Q2145286","display_name":"Representation (politics)","level":3,"score":0.47638386},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.47474295},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.445526},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.37676847},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.32270107},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.28587556},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.08158788},{"id":"https://openalex.org/C94625758","wikidata":"https://www.wikidata.org/wiki/Q7163","display_name":"Politics","level":2,"score":0.0},{"id":"https://openalex.org/C24890656","wikidata":"https://www.wikidata.org/wiki/Q82811","display_name":"Acoustics","level":1,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0},{"id":"https://openalex.org/C37914503","wikidata":"https://www.wikidata.org/wiki/Q156495","display_name":"Mathematical physics","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.04952","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2211.04952","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.04952","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.4,"id":"https://metadata.un.org/sdg/4","display_name":"Quality education"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4308064861","https://openalex.org/W3104453097","https://openalex.org/W2949607517","https://openalex.org/W2944183083","https://openalex.org/W2795079307","https://openalex.org/W2793058541","https://openalex.org/W2594778474","https://openalex.org/W2062195135","https://openalex.org/W1983629434","https://openalex.org/W1971215949"],"abstract_inverted_index":{"An":[0],"effective":[1,131],"aggregation":[2,65,182],"of":[3,74,123,133,148,180],"node":[4,54],"features":[5],"into":[6],"a":[7,109,129,165],"graph-level":[8],"representation":[9],"via":[10,62],"readout":[11,140],"functions":[12,31],"is":[13,39],"an":[14,138],"essential":[15],"step":[16],"in":[17,95,108],"numerous":[18],"learning":[19],"tasks":[20],"involving":[21],"graph":[22,160],"neural":[23,79,149],"networks.":[24],"Typically,":[25],"readouts":[26,50,76,150,170],"are":[27,105],"simple":[28],"and":[29,127,159,174,184],"non-adaptive":[30],"designed":[32],"such":[33,49,98],"that":[34,48,56,81,94],"the":[35,72,118,124,134,146,178],"resulting":[36],"hypothesis":[37,90,125],"space":[38,126],"permutation":[40,88,121],"invariant.":[41],"Prior":[42],"work":[43],"on":[44,120,151],"deep":[45],"sets":[46],"indicates":[47],"might":[51,113],"require":[52],"complex":[53],"embeddings":[55],"can":[57],"be":[58,114],"difficult":[59],"to":[60,87,116,177],"learn":[61,128],"standard":[63,169],"neighborhood":[64,181],"schemes.":[66],"Motivated":[67],"by":[68,78,136],"this,":[69],"we":[70,163],"investigate":[71],"potential":[73],"adaptive":[75,139],"given":[77],"networks":[80],"do":[82],"not":[83],"necessarily":[84],"give":[85],"rise":[86],"invariant":[89],"spaces.":[91],"We":[92],"argue":[93],"some":[96],"problems":[97],"as":[99],"binding":[100],"affinity":[101,135],"prediction":[102],"where":[103],"molecules":[104],"typically":[106],"presented":[107],"canonical":[110],"form":[111],"it":[112],"possible":[115],"relax":[117],"constraints":[119],"invariance":[122],"more":[130,152],"model":[132],"employing":[137],"function.":[141],"Our":[142],"empirical":[143],"results":[144],"demonstrate":[145],"effectiveness":[147],"than":[153],"40":[154],"datasets":[155],"spanning":[156],"different":[157,185],"domains":[158],"characteristics.":[161],"Moreover,":[162],"observe":[164],"consistent":[166],"improvement":[167],"over":[168],"(i.e.,":[171],"sum,":[172],"max,":[173],"mean)":[175],"relative":[176],"number":[179],"iterations":[183],"convolutional":[186],"operators.":[187]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4308759077","counts_by_year":[{"year":2024,"cited_by_count":12},{"year":2023,"cited_by_count":11},{"year":2022,"cited_by_count":1}],"updated_date":"2025-01-06T19:34:23.969553","created_date":"2022-11-15"}