{"id":"https://openalex.org/W4308619129","doi":"https://doi.org/10.48550/arxiv.2211.03705","title":"A Survey on Computer Vision based Human Analysis in the COVID-19 Era","display_name":"A Survey on Computer Vision based Human Analysis in the COVID-19 Era","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4308619129","doi":"https://doi.org/10.48550/arxiv.2211.03705"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.03705","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-sa","license_id":"https://openalex.org/licenses/cc-by-nc-sa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2211.03705","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5001096493","display_name":"Fevziye \u0130rem Eyiokur","orcid":"https://orcid.org/0000-0001-5754-5405"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Eyiokur, Fevziye Irem","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5053590812","display_name":"Alperen Kantarc\u0131","orcid":"https://orcid.org/0000-0002-4080-5538"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kantarc\u0131, Alperen","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5049626197","display_name":"Mustafa Ekrem Erak\u0131n","orcid":"https://orcid.org/0000-0003-3101-9719"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Erak\u0131n, Mustafa Ekrem","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5059766088","display_name":"Naser Damer","orcid":"https://orcid.org/0000-0001-7910-7895"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Damer, Naser","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5091382678","display_name":"Ferda Ofli","orcid":"https://orcid.org/0000-0003-3918-3230"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ofli, Ferda","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100331811","display_name":"Muhammad Ali Imran","orcid":"https://orcid.org/0000-0003-4743-9136"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Imran, Muhammad","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5071416849","display_name":"Janez Kri\u017eaj","orcid":"https://orcid.org/0000-0001-9581-2615"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kri\u017eaj, Janez","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5105769246","display_name":"Albert Ali Salah","orcid":"https://orcid.org/0000-0001-6342-428X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Salah, Albert Ali","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5023053982","display_name":"Alexander Waibel","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Waibel, Alexander","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5038322250","display_name":"Vitomir \u0160truc","orcid":"https://orcid.org/0000-0002-3385-5780"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"\u0160truc, Vitomir","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5009982931","display_name":"Haz\u0131m Kemal Ekenel","orcid":"https://orcid.org/0000-0003-3697-8548"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ekenel, Haz\u0131m Kemal","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11448","display_name":"Face recognition and analysis","score":0.9918,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11448","display_name":"Face recognition and analysis","score":0.9918,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11775","display_name":"COVID-19 diagnosis using AI","score":0.9639,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10410","display_name":"COVID-19 epidemiological studies","score":0.9082,"subfield":{"id":"https://openalex.org/subfields/2611","display_name":"Modeling and Simulation"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/social-distance","display_name":"Social distance","score":0.5560573}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6839555},{"id":"https://openalex.org/C2779304628","wikidata":"https://www.wikidata.org/wiki/Q3503480","display_name":"Face (sociological concept)","level":2,"score":0.5709641},{"id":"https://openalex.org/C172656115","wikidata":"https://www.wikidata.org/wiki/Q2142613","display_name":"Social distance","level":5,"score":0.5560573},{"id":"https://openalex.org/C184297639","wikidata":"https://www.wikidata.org/wiki/Q177765","display_name":"Biometrics","level":2,"score":0.53412205},{"id":"https://openalex.org/C31510193","wikidata":"https://www.wikidata.org/wiki/Q1192553","display_name":"Facial recognition system","level":3,"score":0.51368445},{"id":"https://openalex.org/C9652623","wikidata":"https://www.wikidata.org/wiki/Q190109","display_name":"Field (mathematics)","level":2,"score":0.50679976},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.48200646},{"id":"https://openalex.org/C195704467","wikidata":"https://www.wikidata.org/wiki/Q327968","display_name":"Facial expression","level":2,"score":0.47441834},{"id":"https://openalex.org/C107457646","wikidata":"https://www.wikidata.org/wiki/Q207434","display_name":"Human\u2013computer interaction","level":1,"score":0.42883876},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.40545678},{"id":"https://openalex.org/C3008058167","wikidata":"https://www.wikidata.org/wiki/Q84263196","display_name":"Coronavirus disease 2019 (COVID-19)","level":4,"score":0.4038148},{"id":"https://openalex.org/C2522767166","wikidata":"https://www.wikidata.org/wiki/Q2374463","display_name":"Data science","level":1,"score":0.3607415},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.2105611},{"id":"https://openalex.org/C524204448","wikidata":"https://www.wikidata.org/wiki/Q788926","display_name":"Infectious disease (medical specialty)","level":3,"score":0.10023683},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.0},{"id":"https://openalex.org/C36289849","wikidata":"https://www.wikidata.org/wiki/Q34749","display_name":"Social science","level":1,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C2779134260","wikidata":"https://www.wikidata.org/wiki/Q12136","display_name":"Disease","level":2,"score":0.0},{"id":"https://openalex.org/C142724271","wikidata":"https://www.wikidata.org/wiki/Q7208","display_name":"Pathology","level":1,"score":0.0},{"id":"https://openalex.org/C144024400","wikidata":"https://www.wikidata.org/wiki/Q21201","display_name":"Sociology","level":0,"score":0.0},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.03705","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-sa","license_id":"https://openalex.org/licenses/cc-by-nc-sa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2211.03705","pdf_url":"http://arxiv.org/pdf/2211.03705","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2211.03705","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.03705","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-sa","license_id":"https://openalex.org/licenses/cc-by-nc-sa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4287761470","https://openalex.org/W4241440711","https://openalex.org/W3147744369","https://openalex.org/W3035391215","https://openalex.org/W2384651879","https://openalex.org/W2379932303","https://openalex.org/W2183964146","https://openalex.org/W2098693229","https://openalex.org/W2076845124","https://openalex.org/W2062586268"],"abstract_inverted_index":{"The":[0,185],"emergence":[1],"of":[2,23,37,56,73,85,97,121,187,210,229,235,249,258],"COVID-19":[3,200,261],"has":[4],"had":[5],"a":[6,16,207,246,274],"global":[7],"and":[8,47,53,67,92,123,128,154,165,174,177,204,238,256,281],"profound":[9],"impact,":[10],"not":[11],"only":[12],"on":[13,20,88,106,118,232,276],"society":[14],"as":[15,102],"whole,":[17],"but":[18],"also":[19,61,265],"the":[21,31,35,38,54,63,78,89,107,119,132,135,140,196,211,215,227,233,254,271,277],"lives":[22],"individuals.":[24],"Various":[25],"prevention":[26,79],"measures":[27,80],"were":[28],"introduced":[29,138],"around":[30],"world":[32],"to":[33,77,191,195,205,226,241,268],"limit":[34],"transmission":[36],"disease,":[39],"including":[40],"face":[41,153,158],"masks,":[42],"mandates":[43,141],"for":[44,65,142,170,253,260],"social":[45],"distancing":[46],"regular":[48],"disinfection":[49],"in":[50,125,214],"public":[51],"spaces,":[52],"use":[55],"screening":[57],"applications.":[58],"These":[59],"developments":[60],"triggered":[62],"need":[64],"novel":[66],"improved":[68],"computer":[69,113,146,216],"vision":[70,114,147,217],"techniques":[71,115,151],"capable":[72],"(i)":[74],"providing":[75],"support":[76],"through":[81],"an":[82,193],"automated":[83],"analysis":[84,120,150,220],"visual":[86,126],"data,":[87],"one":[90],"hand,":[91],"(ii)":[93],"facilitating":[94],"normal":[95],"operation":[96],"existing":[98,250],"vision-based":[99],"services,":[100],"such":[101,202],"biometric":[103],"authentication":[104],"schemes,":[105],"other.":[108],"Especially":[109],"important":[110],"here,":[111],"are":[112],"that":[116],"focus":[117],"people":[122],"faces":[124],"data":[127],"have":[129,178],"been":[130],"affected":[131],"most":[133],"by":[134,139,199],"partial":[136],"occlusions":[137],"facial":[143,230],"masks.":[144],"Such":[145],"based":[148,218],"human":[149,219],"include":[152],"face-mask":[155],"detection":[156],"approaches,":[157],"recognition":[159],"techniques,":[160],"crowd":[161],"counting":[162],"solutions,":[163],"age":[164],"expression":[166],"estimation":[167],"procedures,":[168],"models":[169],"detecting":[171],"face-hand":[172],"interactions":[173],"many":[175],"others,":[176],"seen":[179],"considerable":[180],"attention":[181,223],"over":[182],"recent":[183,239],"years.":[184],"goal":[186],"this":[188,243],"survey":[189],"is":[190,224,264,285],"provide":[192],"introduction":[194],"problems":[197],"induced":[198],"into":[201],"research":[203,283],"present":[206],"comprehensive":[208],"review":[209,248],"work":[212],"done":[213],"field.":[221],"Particular":[222],"paid":[225],"impact":[228],"masks":[231],"performance":[234],"various":[236],"methods":[237,259],"solutions":[240],"mitigate":[242],"problem.":[244],"Additionally,":[245],"detailed":[247],"datasets":[251],"useful":[252],"development":[255],"evaluation":[257],"related":[262],"applications":[263],"provided.":[266],"Finally,":[267],"help":[269],"advance":[270],"field":[272],"further,":[273],"discussion":[275],"main":[278],"open":[279],"challenges":[280],"future":[282],"direction":[284],"given.":[286]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4308619129","counts_by_year":[],"updated_date":"2024-12-12T10:20:26.698110","created_date":"2022-11-13"}