{"id":"https://openalex.org/W4320561238","doi":"https://doi.org/10.48550/arxiv.2211.02166","title":"A $k$-additive Choquet integral-based approach to approximate the SHAP values for local interpretability in machine learning","display_name":"A $k$-additive Choquet integral-based approach to approximate the SHAP values for local interpretability in machine learning","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4320561238","doi":"https://doi.org/10.48550/arxiv.2211.02166"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.02166","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2211.02166","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5040377739","display_name":"Guilherme Dean Pelegrina","orcid":"https://orcid.org/0000-0001-7301-6167"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Pelegrina, Guilherme Dean","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5047456733","display_name":"Leonardo Tomazeli Duarte","orcid":"https://orcid.org/0000-0003-0290-0080"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Duarte, Leonardo Tomazeli","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5034398981","display_name":"Michel Grabisch","orcid":"https://orcid.org/0000-0002-3283-1496"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Grabisch, Michel","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":61},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12026","display_name":"Explainable Artificial Intelligence","score":0.9945,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12026","display_name":"Explainable Artificial Intelligence","score":0.9945,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10050","display_name":"Multi-Criteria Decision Making","score":0.9945,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11303","display_name":"Learning and Inference in Bayesian Networks","score":0.9936,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/interpretability","display_name":"Interpretability","score":0.9784355},{"id":"https://openalex.org/keywords/shapley-value","display_name":"Shapley value","score":0.79976857},{"id":"https://openalex.org/keywords/choquet-integral","display_name":"Choquet integral","score":0.718718},{"id":"https://openalex.org/keywords/machine-learning-interpretability","display_name":"Machine Learning Interpretability","score":0.62393},{"id":"https://openalex.org/keywords/interpretable-models","display_name":"Interpretable Models","score":0.611758},{"id":"https://openalex.org/keywords/model-interpretability","display_name":"Model Interpretability","score":0.596244},{"id":"https://openalex.org/keywords/structure-learning","display_name":"Structure Learning","score":0.554367},{"id":"https://openalex.org/keywords/kernel","display_name":"Kernel (algebra)","score":0.55117035},{"id":"https://openalex.org/keywords/probabilistic-learning","display_name":"Probabilistic Learning","score":0.528352}],"concepts":[{"id":"https://openalex.org/C2781067378","wikidata":"https://www.wikidata.org/wiki/Q17027399","display_name":"Interpretability","level":2,"score":0.9784355},{"id":"https://openalex.org/C199022921","wikidata":"https://www.wikidata.org/wiki/Q240046","display_name":"Shapley value","level":3,"score":0.79976857},{"id":"https://openalex.org/C112799922","wikidata":"https://www.wikidata.org/wiki/Q5104911","display_name":"Choquet integral","level":3,"score":0.718718},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.568519},{"id":"https://openalex.org/C45374587","wikidata":"https://www.wikidata.org/wiki/Q12525525","display_name":"Computation","level":2,"score":0.5672468},{"id":"https://openalex.org/C74193536","wikidata":"https://www.wikidata.org/wiki/Q574844","display_name":"Kernel (algebra)","level":2,"score":0.55117035},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5059342},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.4828156},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.3716418},{"id":"https://openalex.org/C177142836","wikidata":"https://www.wikidata.org/wiki/Q44455","display_name":"Game theory","level":2,"score":0.36884272},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.32220227},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.23647663},{"id":"https://openalex.org/C144237770","wikidata":"https://www.wikidata.org/wiki/Q747534","display_name":"Mathematical economics","level":1,"score":0.22835511},{"id":"https://openalex.org/C118615104","wikidata":"https://www.wikidata.org/wiki/Q121416","display_name":"Discrete mathematics","level":1,"score":0.11792773},{"id":"https://openalex.org/C58166","wikidata":"https://www.wikidata.org/wiki/Q224821","display_name":"Fuzzy logic","level":2,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.02166","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2211.02166","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.02166","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4390569940","https://openalex.org/W4361193272","https://openalex.org/W4308361263","https://openalex.org/W2905433371","https://openalex.org/W2888392564","https://openalex.org/W2120220542","https://openalex.org/W2013832345","https://openalex.org/W2006581498","https://openalex.org/W1998066849","https://openalex.org/W1894585900"],"abstract_inverted_index":{"Besides":[0],"accuracy,":[1],"recent":[2],"studies":[3],"on":[4,13,93,137,202],"machine":[5,24,134],"learning":[6,25,135],"models":[7,26],"have":[8],"been":[9],"addressing":[10],"the":[11,15,58,65,77,86,155,172,184,189,208],"question":[12],"how":[14],"obtained":[16,193],"results":[17,33,194],"can":[18,102],"be":[19,103],"interpreted.":[20],"Indeed,":[21],"while":[22],"complex":[23],"are":[27],"able":[28],"to":[29,45,74,160,182,206],"provide":[30,142],"very":[31,104],"good":[32],"in":[34,39,72,133],"terms":[35],"of":[36,57,80,83,97,146,174,204],"accuracy":[37],"even":[38],"challenging":[40],"applications,":[41],"it":[42],"is":[43],"difficult":[44],"interpret":[46],"them.":[47],"Aiming":[48],"at":[49],"providing":[50],"some":[51],"interpretability":[52,132,152],"for":[53,150],"such":[54,119],"models,":[55],"one":[56],"most":[59],"famous":[60],"methods,":[61],"called":[62,110],"SHAP,":[63],"borrows":[64],"Shapley":[66,138,162,165],"value":[67],"concept":[68,173],"from":[69,177],"game":[70,178],"theory":[71],"order":[73],"locally":[75],"explain":[76],"predicted":[78],"outcome":[79],"an":[81,114],"instance":[82],"interest.":[84],"As":[85],"SHAP":[87,112,190,209],"values":[88,120,163],"calculation":[89],"needs":[90,199],"previous":[91],"computations":[92,201],"all":[94],"possible":[95],"coalitions":[96,203],"attributes,":[98],"its":[99],"computational":[100,123,185],"cost":[101],"high.":[105],"Therefore,":[106],"a":[107,143,147],"SHAP-based":[108,148],"method":[109,149],"Kernel":[111],"adopts":[113],"efficient":[115],"strategy":[116],"that":[117,196],"approximate":[118,207],"with":[121],"less":[122,200],"effort.":[124],"In":[125],"this":[126],"paper,":[127],"we":[128,141,169],"also":[129,170],"address":[130],"local":[131,151],"based":[136],"values.":[139,191,210],"Firstly,":[140],"straightforward":[144],"formulation":[145],"by":[153],"using":[154],"Choquet":[156],"integral,":[157],"which":[158,180],"leads":[159],"both":[161],"and":[164],"interaction":[166],"indices.":[167],"Moreover,":[168],"adopt":[171],"$k$-additive":[175],"games":[176],"theory,":[179],"contributes":[181],"reduce":[183],"effort":[186],"when":[187],"estimating":[188],"The":[192],"attest":[195],"our":[197],"proposal":[198],"attributes":[205]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4320561238","counts_by_year":[],"updated_date":"2024-10-27T09:37:01.868726","created_date":"2023-02-15"}