{"id":"https://openalex.org/W4308243510","doi":"https://doi.org/10.48550/arxiv.2211.01646","title":"Adversarial Data Augmentation Using VAE-GAN for Disordered Speech Recognition","display_name":"Adversarial Data Augmentation Using VAE-GAN for Disordered Speech Recognition","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4308243510","doi":"https://doi.org/10.48550/arxiv.2211.01646"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.01646","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2211.01646","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5075023049","display_name":"Zengrui Jin","orcid":"https://orcid.org/0000-0002-2637-7880"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jin, Zengrui","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5113476082","display_name":"Xurong Xie","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xie, Xurong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5003895235","display_name":"Mengzhe Geng","orcid":"https://orcid.org/0000-0002-7886-439X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Geng, Mengzhe","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5106407750","display_name":"Tianzi Wang","orcid":"https://orcid.org/0009-0005-5823-3039"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Tianzi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5026334377","display_name":"Shujie Hu","orcid":"https://orcid.org/0000-0002-8475-4912"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hu, Shujie","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5089561793","display_name":"Jiajun Deng","orcid":"https://orcid.org/0000-0001-9624-7451"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Deng, Jiajun","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5042515126","display_name":"Guinan Li","orcid":"https://orcid.org/0000-0002-2206-0237"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Guinan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5037109470","display_name":"Xunying Liu","orcid":"https://orcid.org/0000-0001-6725-1160"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Liu, Xunying","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10863","display_name":"Voice and Speech Disorders","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/2737","display_name":"Physiology"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T10863","display_name":"Voice and Speech Disorders","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/2737","display_name":"Physiology"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10201","display_name":"Speech Recognition and Synthesis","score":0.9963,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10403","display_name":"Phonetics and Phonology Research","score":0.9742,"subfield":{"id":"https://openalex.org/subfields/3205","display_name":"Experimental and Cognitive Psychology"},"field":{"id":"https://openalex.org/fields/32","display_name":"Psychology"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/intelligibility","display_name":"Intelligibility (philosophy)","score":0.5372986},{"id":"https://openalex.org/keywords/training-set","display_name":"Training set","score":0.48042893}],"concepts":[{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.72989804},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7218989},{"id":"https://openalex.org/C37736160","wikidata":"https://www.wikidata.org/wiki/Q1801315","display_name":"Adversarial system","level":2,"score":0.5836785},{"id":"https://openalex.org/C60048801","wikidata":"https://www.wikidata.org/wiki/Q1433889","display_name":"Intelligibility (philosophy)","level":2,"score":0.5372986},{"id":"https://openalex.org/C51632099","wikidata":"https://www.wikidata.org/wiki/Q3985153","display_name":"Training set","level":2,"score":0.48042893},{"id":"https://openalex.org/C39890363","wikidata":"https://www.wikidata.org/wiki/Q36108","display_name":"Generative grammar","level":2,"score":0.46560484},{"id":"https://openalex.org/C57273362","wikidata":"https://www.wikidata.org/wiki/Q576722","display_name":"Decoding methods","level":2,"score":0.4542615},{"id":"https://openalex.org/C118505674","wikidata":"https://www.wikidata.org/wiki/Q42586063","display_name":"Encoder","level":2,"score":0.45298442},{"id":"https://openalex.org/C169903167","wikidata":"https://www.wikidata.org/wiki/Q3985153","display_name":"Test set","level":2,"score":0.4438483},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.43931368},{"id":"https://openalex.org/C41608201","wikidata":"https://www.wikidata.org/wiki/Q980509","display_name":"Embedding","level":2,"score":0.43187946},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.42473564},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.3282249},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C111472728","wikidata":"https://www.wikidata.org/wiki/Q9471","display_name":"Epistemology","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.01646","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2211.01646","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.01646","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.66,"id":"https://metadata.un.org/sdg/10","display_name":"Reduced inequalities"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4285706568","https://openalex.org/W4225124612","https://openalex.org/W3211393740","https://openalex.org/W3208049411","https://openalex.org/W3022908591","https://openalex.org/W2946768379","https://openalex.org/W2043806667","https://openalex.org/W2021633306","https://openalex.org/W2006801911","https://openalex.org/W1999699871"],"abstract_inverted_index":{"Automatic":[0],"recognition":[1],"of":[2,30,135,142,151,156],"disordered":[3,50],"speech":[4,32,51,73],"remains":[5],"a":[6],"highly":[7],"challenging":[8],"task":[9],"to":[10,23,57,70],"date.":[11],"The":[12],"underlying":[13],"neuro-motor":[14],"conditions,":[15],"often":[16],"compounded":[17],"with":[18,112,158],"co-occurring":[19],"physical":[20],"disabilities,":[21],"lead":[22],"the":[24,91,95,103,124,138,147,154],"difficulty":[25],"in":[26],"collecting":[27],"large":[28],"quantities":[29],"impaired":[31,63],"required":[33],"for":[34],"ASR":[35],"system":[36,126],"development.":[37],"This":[38],"paper":[39],"presents":[40],"novel":[41],"variational":[42],"auto-encoder":[43],"generative":[44],"adversarial":[45,97],"network":[46],"(VAE-GAN)":[47],"based":[48,129],"personalized":[49],"augmentation":[52,99,110,130],"approaches":[53],"that":[54],"simultaneously":[55],"learn":[56,71],"encode,":[58],"generate":[59],"and":[60,75,107,116,146],"discriminate":[61],"synthesized":[62],"speech.":[64],"Separate":[65],"latent":[66],"features":[67,84],"are":[68,85],"derived":[69],"dysarthric":[72,144],"characteristics":[74],"phoneme":[76],"context":[77],"representations.":[78],"Self-supervised":[79],"pre-trained":[80],"Wav2vec":[81],"2.0":[82],"embedding":[83],"also":[86],"incorporated.":[87],"Experiments":[88],"conducted":[89],"on":[90,137,153],"UASpeech":[92,139],"corpus":[93],"suggest":[94],"proposed":[96],"data":[98],"approach":[100],"consistently":[101],"outperformed":[102],"baseline":[104],"speed":[105],"perturbation":[106],"non-VAE":[108],"GAN":[109],"methods":[111],"trained":[113],"hybrid":[114],"TDNN":[115],"End-to-end":[117],"Conformer":[118],"systems.":[119],"After":[120],"LHUC":[121],"speaker":[122],"adaptation,":[123],"best":[125],"using":[127],"VAE-GAN":[128],"produced":[131],"an":[132],"overall":[133],"WER":[134,150],"27.78%":[136],"test":[140],"set":[141],"16":[143],"speakers,":[145],"lowest":[148],"published":[149],"57.31%":[152],"subset":[155],"speakers":[157],"\"Very":[159],"Low\"":[160],"intelligibility.":[161]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4308243510","counts_by_year":[],"updated_date":"2024-12-15T01:04:44.466685","created_date":"2022-11-09"}