{"id":"https://openalex.org/W4308163848","doi":"https://doi.org/10.48550/arxiv.2211.01323","title":"Generation of Anonymous Chest Radiographs Using Latent Diffusion Models for Training Thoracic Abnormality Classification Systems","display_name":"Generation of Anonymous Chest Radiographs Using Latent Diffusion Models for Training Thoracic Abnormality Classification Systems","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4308163848","doi":"https://doi.org/10.48550/arxiv.2211.01323"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.01323","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2211.01323","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5070665907","display_name":"Kai Packh\u00e4user","orcid":"https://orcid.org/0000-0002-9093-6827"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Packh\u00e4user, Kai","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5073077384","display_name":"Lukas Folle","orcid":"https://orcid.org/0000-0002-5395-097X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Folle, Lukas","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5033636973","display_name":"Florian Thamm","orcid":"https://orcid.org/0000-0003-3079-5660"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Thamm, Florian","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5101619735","display_name":"Andreas Maier","orcid":"https://orcid.org/0000-0002-9550-5284"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Maier, Andreas","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":3,"citation_normalized_percentile":{"value":0.88177,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":75,"max":79},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9776,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9776,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10862","display_name":"AI in cancer detection","score":0.9706,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11775","display_name":"COVID-19 diagnosis using AI","score":0.9576,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/abnormality","display_name":"Abnormality","score":0.623393}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7367823},{"id":"https://openalex.org/C50965678","wikidata":"https://www.wikidata.org/wiki/Q2724302","display_name":"Abnormality","level":2,"score":0.623393},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.6153441},{"id":"https://openalex.org/C154504017","wikidata":"https://www.wikidata.org/wiki/Q853614","display_name":"Identifier","level":2,"score":0.5914615},{"id":"https://openalex.org/C184297639","wikidata":"https://www.wikidata.org/wiki/Q177765","display_name":"Biometrics","level":2,"score":0.5848319},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.55046624},{"id":"https://openalex.org/C36454342","wikidata":"https://www.wikidata.org/wiki/Q245341","display_name":"Radiography","level":2,"score":0.4202034},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.41030556},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.3991484},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.33908904},{"id":"https://openalex.org/C126838900","wikidata":"https://www.wikidata.org/wiki/Q77604","display_name":"Radiology","level":1,"score":0.30445552},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.21253672},{"id":"https://openalex.org/C118552586","wikidata":"https://www.wikidata.org/wiki/Q7867","display_name":"Psychiatry","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.01323","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2211.01323","pdf_url":"http://arxiv.org/pdf/2211.01323","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2211.01323","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.01323","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.44,"id":"https://metadata.un.org/sdg/17","display_name":"Partnerships for the goals"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4378651134","https://openalex.org/W4247543202","https://openalex.org/W4243456421","https://openalex.org/W2437595322","https://openalex.org/W2379932303","https://openalex.org/W2322340370","https://openalex.org/W2183964146","https://openalex.org/W2149281258","https://openalex.org/W2149037710","https://openalex.org/W2076845124"],"abstract_inverted_index":{"The":[0,95],"availability":[1],"of":[2,32,42,73,87,97,104,131],"large-scale":[3],"chest":[4,26,70],"X-ray":[5,71],"datasets":[6],"is":[7],"a":[8,53,62,79,113,120,128],"requirement":[9],"for":[10,35,55],"developing":[11],"well-performing":[12],"deep":[13],"learning-based":[14],"algorithms":[15],"in":[16,25,134],"thoracic":[17,114],"abnormality":[18,115],"detection":[19],"and":[20,101],"classification.":[21],"However,":[22],"biometric":[23,88],"identifiers":[24],"radiographs":[27],"hinder":[28],"the":[29,40,85,91,98,102,135,138],"public":[30],"sharing":[31],"such":[33],"data":[34,50,109],"research":[36],"purposes":[37],"due":[38],"to":[39,66,83,119],"risk":[41],"patient":[43],"re-identification.":[44],"To":[45],"counteract":[46],"this":[47],"issue,":[48],"synthetic":[49],"generation":[51,93],"offers":[52],"solution":[54],"anonymizing":[56],"medical":[57],"images.":[58,76],"This":[59],"work":[60],"employs":[61],"latent":[63],"diffusion":[64],"model":[65],"synthesize":[67],"an":[68],"anonymous":[69],"dataset":[72],"high-quality":[74],"class-conditional":[75],"We":[77],"propose":[78],"privacy-enhancing":[80],"sampling":[81],"strategy":[82],"ensure":[84],"non-transference":[86],"information":[89],"during":[90],"image":[92],"process.":[94],"quality":[96],"generated":[99],"images":[100],"feasibility":[103],"serving":[105],"as":[106],"exclusive":[107],"training":[108],"are":[110],"evaluated":[111],"on":[112],"classification":[116],"task.":[117],"Compared":[118],"real":[121],"classifier,":[122],"we":[123],"achieve":[124],"competitive":[125],"results":[126],"with":[127],"performance":[129],"gap":[130],"only":[132],"3.5%":[133],"area":[136],"under":[137],"receiver":[139],"operating":[140],"characteristic":[141],"curve.":[142]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4308163848","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":1}],"updated_date":"2025-04-18T15:05:13.834920","created_date":"2022-11-08"}