{"id":"https://openalex.org/W4308023692","doi":"https://doi.org/10.48550/arxiv.2211.00631","title":"Composite Feature Selection using Deep Ensembles","display_name":"Composite Feature Selection using Deep Ensembles","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4308023692","doi":"https://doi.org/10.48550/arxiv.2211.00631"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.00631","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2211.00631","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5017415803","display_name":"Fergus Imrie","orcid":"https://orcid.org/0000-0002-6241-0123"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Imrie, Fergus","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5072857367","display_name":"Alexander Norcliffe","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Norcliffe, Alexander","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5056748708","display_name":"P\u00edetro Li\u00f3","orcid":"https://orcid.org/0000-0002-0540-5053"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lio, Pietro","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5012339002","display_name":"Mihaela van der Schaar","orcid":"https://orcid.org/0000-0003-3933-6049"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"van der Schaar, Mihaela","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.770161,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":59,"max":69},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10211","display_name":"Computational Drug Discovery Methods","score":0.993,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10211","display_name":"Computational Drug Discovery Methods","score":0.993,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12254","display_name":"Machine Learning in Bioinformatics","score":0.9929,"subfield":{"id":"https://openalex.org/subfields/1312","display_name":"Molecular Biology"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T10885","display_name":"Gene expression and cancer classification","score":0.981,"subfield":{"id":"https://openalex.org/subfields/1312","display_name":"Molecular Biology"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/ground-truth","display_name":"Ground truth","score":0.6412394},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.594563},{"id":"https://openalex.org/keywords/similarity","display_name":"Similarity (geometry)","score":0.49143064}],"concepts":[{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.68500775},{"id":"https://openalex.org/C148483581","wikidata":"https://www.wikidata.org/wiki/Q446488","display_name":"Feature selection","level":2,"score":0.670488},{"id":"https://openalex.org/C176217482","wikidata":"https://www.wikidata.org/wiki/Q860554","display_name":"Metric (unit)","level":2,"score":0.6696739},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6443997},{"id":"https://openalex.org/C146849305","wikidata":"https://www.wikidata.org/wiki/Q370766","display_name":"Ground truth","level":2,"score":0.6412394},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.594563},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5127541},{"id":"https://openalex.org/C81917197","wikidata":"https://www.wikidata.org/wiki/Q628760","display_name":"Selection (genetic algorithm)","level":2,"score":0.5094374},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5070994},{"id":"https://openalex.org/C103278499","wikidata":"https://www.wikidata.org/wiki/Q254465","display_name":"Similarity (geometry)","level":3,"score":0.49143064},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.49108815},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.36699706},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.26728395},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C21547014","wikidata":"https://www.wikidata.org/wiki/Q1423657","display_name":"Operations management","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.00631","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2211.00631","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.00631","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4386564352","https://openalex.org/W4295532600","https://openalex.org/W2952668426","https://openalex.org/W2220635983","https://openalex.org/W2145649715","https://openalex.org/W2113666009","https://openalex.org/W2090985514","https://openalex.org/W2067569035","https://openalex.org/W2063823869","https://openalex.org/W2047973478"],"abstract_inverted_index":{"In":[0],"many":[1],"real":[2],"world":[3],"problems,":[4],"features":[5,46,66],"do":[6,71],"not":[7,22],"act":[8],"alone":[9],"but":[10,29],"in":[11,18,77],"combination":[12],"with":[13],"each":[14],"other.":[15],"For":[16],"example,":[17],"genomics,":[19],"diseases":[20],"might":[21],"be":[23,110],"caused":[24],"by":[25],"any":[26],"single":[27],"mutation":[28],"require":[30],"the":[31,59,134,139,153],"presence":[32],"of":[33,61,64,79,97,141],"multiple":[34,145],"mutations.":[35],"Prior":[36],"work":[37],"on":[38,144],"feature":[39,98],"selection":[40,99],"either":[41],"seeks":[42],"to":[43,101,109,127],"identify":[44],"individual":[45],"or":[47],"can":[48],"only":[49],"determine":[50],"relevant":[51],"groups":[52,63,76,108,114,132],"from":[53],"a":[54,88,124,166],"predefined":[55,68],"set.":[56],"We":[57,86,137],"investigate":[58],"problem":[60],"discovering":[62],"predictive":[65,75,103],"without":[67,105],"grouping.":[69],"To":[70],"so,":[72],"we":[73,122],"define":[74],"terms":[78],"linear":[80],"and":[81,117,133,148,165],"non-linear":[82],"interactions":[83],"between":[84,130],"features.":[85],"introduce":[87],"novel":[89],"deep":[90],"learning":[91],"architecture":[92],"that":[93],"uses":[94],"an":[95,162],"ensemble":[96],"models":[100],"find":[102],"groups,":[104],"requiring":[106],"candidate":[107],"provided.":[111],"The":[112],"selected":[113],"are":[115],"sparse":[116],"exhibit":[118],"minimum":[119],"overlap.":[120],"Furthermore,":[121],"propose":[123],"new":[125],"metric":[126],"measure":[128],"similarity":[129],"discovered":[131],"ground":[135,154],"truth.":[136],"demonstrate":[138],"utility":[140],"our":[142],"model":[143],"synthetic":[146],"tasks":[147],"semi-synthetic":[149],"chemistry":[150],"datasets,":[151],"where":[152],"truth":[155],"structure":[156],"is":[157],"known,":[158],"as":[159,161],"well":[160],"image":[163],"dataset":[164],"real-world":[167],"cancer":[168],"dataset.":[169]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4308023692","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2025-03-23T16:48:11.028370","created_date":"2022-11-07"}