{"id":"https://openalex.org/W4308013050","doi":"https://doi.org/10.48550/arxiv.2211.00003","title":"MEDS-Net: Self-Distilled Multi-Encoders Network with Bi-Direction Maximum Intensity projections for Lung Nodule Detection","display_name":"MEDS-Net: Self-Distilled Multi-Encoders Network with Bi-Direction Maximum Intensity projections for Lung Nodule Detection","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4308013050","doi":"https://doi.org/10.48550/arxiv.2211.00003"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.00003","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2211.00003","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100616125","display_name":"Muhammad Usman","orcid":"https://orcid.org/0000-0001-9747-8892"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Usman, Muhammad","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5010615278","display_name":"Azka Rehman","orcid":"https://orcid.org/0000-0001-7085-0105"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Rehman, Azka","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5109608108","display_name":"Abdullah Shahid","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Shahid, Abdullah","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5047197696","display_name":"Siddique Latif","orcid":"https://orcid.org/0000-0001-5662-4777"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Latif, Siddique","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5049018373","display_name":"Shi Sub Byon","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Byon, Shi Sub","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5063887945","display_name":"Byoung Dai Lee","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lee, Byoung Dai","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5111083089","display_name":"Sung Hyun Kim","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kim, Sung Hyun","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5055485964","display_name":"Byung il Lee","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lee, Byung il","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5114186339","display_name":"Yeong Gil Shin","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Shin, Yeong Gil","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.787969,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":59,"max":69},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10202","display_name":"Lung Cancer Diagnosis and Treatment","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/2740","display_name":"Pulmonary and Respiratory Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T10202","display_name":"Lung Cancer Diagnosis and Treatment","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/2740","display_name":"Pulmonary and Respiratory Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T11775","display_name":"COVID-19 diagnosis using AI","score":0.9972,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9966,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/nodule","display_name":"Nodule (geology)","score":0.48194432}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6865033},{"id":"https://openalex.org/C2777210771","wikidata":"https://www.wikidata.org/wiki/Q4927124","display_name":"Block (permutation group theory)","level":2,"score":0.6660324},{"id":"https://openalex.org/C94915269","wikidata":"https://www.wikidata.org/wiki/Q1834857","display_name":"Detector","level":2,"score":0.63845694},{"id":"https://openalex.org/C118505674","wikidata":"https://www.wikidata.org/wiki/Q42586063","display_name":"Encoder","level":2,"score":0.6058414},{"id":"https://openalex.org/C64869954","wikidata":"https://www.wikidata.org/wiki/Q1859747","display_name":"False positive paradox","level":2,"score":0.59635967},{"id":"https://openalex.org/C2776731575","wikidata":"https://www.wikidata.org/wiki/Q2916245","display_name":"Nodule (geology)","level":2,"score":0.48194432},{"id":"https://openalex.org/C57493831","wikidata":"https://www.wikidata.org/wiki/Q3134666","display_name":"Projection (relational algebra)","level":2,"score":0.4533559},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.4381836},{"id":"https://openalex.org/C2777303404","wikidata":"https://www.wikidata.org/wiki/Q759757","display_name":"Convergence (economics)","level":2,"score":0.41128957},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.40727746},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.35168695},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.3267815},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.24365789},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C50522688","wikidata":"https://www.wikidata.org/wiki/Q189833","display_name":"Economic growth","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.00003","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2211.00003","pdf_url":"http://arxiv.org/pdf/2211.00003","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2211.00003","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2211.00003","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4390516098","https://openalex.org/W3209204065","https://openalex.org/W2183246718","https://openalex.org/W2160907113","https://openalex.org/W2105707930","https://openalex.org/W2099261052","https://openalex.org/W2086542911","https://openalex.org/W2070813941","https://openalex.org/W1755711892","https://openalex.org/W1557094818"],"abstract_inverted_index":{"In":[0],"this":[1],"study,":[2],"we":[3,19,123],"propose":[4],"a":[5,37,68,125,185],"lung":[6,136],"nodule":[7,80,137],"detection":[8],"scheme":[9,157,172],"which":[10,71,76,109,133,207],"fully":[11],"incorporates":[12],"the":[13,79,91,105,113,120,130,143,147,151,155,159,164,211],"clinic":[14],"workflow":[15],"of":[16,27,40,44,73,150,180,188,195,213,221],"radiologists.":[17],"Particularly,":[18],"exploit":[20],"Bi-Directional":[21],"Maximum":[22],"intensity":[23],"projection":[24],"(MIP)":[25],"images":[26,198],"various":[28,117],"thicknesses":[29],"(i.e.,":[30],"3,":[31],"5":[32],"and":[33,93,145,183,215,223],"10mm)":[34],"along":[35,89],"with":[36,90,167,217],"3D":[38,60],"patch":[39,61],"CT":[41],"scan,":[42,226],"consisting":[43],"10":[45],"adjacent":[46],"slices":[47],"to":[48,63,99,103,141,201,209],"feed":[49],"into":[50,112],"self-distillation-based":[51],"Multi-Encoders":[52],"Network":[53],"(MEDS-Net).":[54],"The":[55,170,190],"proposed":[56,152,156,171],"architecture":[57],"first":[58],"condenses":[59],"input":[62],"three":[64,100],"channels":[65],"by":[66,128,162],"using":[67],"dense":[69,74],"block":[70,115],"consists":[72],"units":[75],"effectively":[77,202],"examine":[78],"presence":[81],"from":[82,205],"2D":[83],"axial":[84],"slices.":[85],"This":[86],"condensed":[87],"information,":[88],"forward":[92],"backward":[94],"MIP":[95,197],"images,":[96],"is":[97,110],"fed":[98],"different":[101],"encoders":[102],"learn":[104],"most":[106],"meaningful":[107],"representation,":[108],"forwarded":[111],"decoded":[114],"at":[116],"levels.":[118],"At":[119],"decoder":[121],"block,":[122,132],"employ":[124],"self-distillation":[126],"mechanism":[127],"connecting":[129],"distillation":[131],"contains":[134],"five":[135],"detectors.":[138,169],"It":[139],"helps":[140],"expedite":[142],"convergence":[144],"improves":[146],"learning":[148],"ability":[149],"architecture.":[153],"Finally,":[154],"reduces":[158],"false":[160,218],"positives":[161,219],"complementing":[163],"main":[165],"detector":[166],"auxiliary":[168],"has":[173],"been":[174],"rigorously":[175],"evaluated":[176],"on":[177],"888":[178],"scans":[179],"LUNA16":[181],"dataset":[182],"obtained":[184],"CPM":[186],"score":[187],"93.6\\%.":[189],"results":[191],"demonstrate":[192],"that":[193],"incorporating":[194],"bi-direction":[196],"enables":[199],"MEDS-Net":[200],"distinguish":[203],"nodules":[204],"surroundings":[206],"help":[208],"achieve":[210],"sensitivity":[212],"91.5%":[214],"92.8%":[216],"rate":[220],"0.25":[222],"0.5":[224],"per":[225],"respectively.":[227]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4308013050","counts_by_year":[{"year":2023,"cited_by_count":1}],"updated_date":"2025-04-24T03:59:47.373050","created_date":"2022-11-07"}