{"id":"https://openalex.org/W4307937710","doi":"https://doi.org/10.48550/arxiv.2210.16789","title":"STGC-GNNs: A GNN-based traffic prediction framework with a spatial-temporal Granger causality graph","display_name":"STGC-GNNs: A GNN-based traffic prediction framework with a spatial-temporal Granger causality graph","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4307937710","doi":"https://doi.org/10.48550/arxiv.2210.16789"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2210.16789","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":null,"is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"journal-article","indexed_in":["datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2210.16789","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5032591686","display_name":"Silu He","orcid":"https://orcid.org/0000-0003-0144-2524"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"He, Silu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5089781268","display_name":"Qinyao Luo","orcid":"https://orcid.org/0000-0003-1275-0442"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Luo, Qinyao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100742786","display_name":"Ronghua Du","orcid":"https://orcid.org/0000-0003-1081-5572"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Du, Ronghua","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5050355323","display_name":"Ling Zhao","orcid":"https://orcid.org/0000-0002-0168-2184"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhao, Ling","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5100398353","display_name":"Haifeng Li","orcid":"https://orcid.org/0000-0003-1173-6593"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Haifeng","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11980","display_name":"Human Mobility and Location-Based Analysis","score":0.9721,"subfield":{"id":"https://openalex.org/subfields/3313","display_name":"Transportation"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10698","display_name":"Transportation Planning and Optimization","score":0.9331,"subfield":{"id":"https://openalex.org/subfields/3313","display_name":"Transportation"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.48173955},{"id":"https://openalex.org/keywords/causality","display_name":"Causality","score":0.42843214}],"concepts":[{"id":"https://openalex.org/C129824826","wikidata":"https://www.wikidata.org/wiki/Q2630107","display_name":"Granger causality","level":2,"score":0.6938586},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6442415},{"id":"https://openalex.org/C761482","wikidata":"https://www.wikidata.org/wiki/Q118093","display_name":"Transmission (telecommunications)","level":2,"score":0.48572952},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.48173955},{"id":"https://openalex.org/C75778745","wikidata":"https://www.wikidata.org/wiki/Q342626","display_name":"Lag","level":2,"score":0.4754795},{"id":"https://openalex.org/C159620131","wikidata":"https://www.wikidata.org/wiki/Q1938983","display_name":"Spatial analysis","level":2,"score":0.4569105},{"id":"https://openalex.org/C207512268","wikidata":"https://www.wikidata.org/wiki/Q3074551","display_name":"Traffic flow (computer networking)","level":2,"score":0.44795385},{"id":"https://openalex.org/C64357122","wikidata":"https://www.wikidata.org/wiki/Q1149766","display_name":"Causality (physics)","level":2,"score":0.42843214},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.35951525},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.1532008},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.13596758},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.12769094},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.11808631},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.09344366},{"id":"https://openalex.org/C58640448","wikidata":"https://www.wikidata.org/wiki/Q42515","display_name":"Cartography","level":1,"score":0.075493515},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2210.16789","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2210.16789","pdf_url":"http://arxiv.org/pdf/2210.16789","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2210.16789","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2210.16789","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":null,"is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.48,"display_name":"Sustainable cities and communities","id":"https://metadata.un.org/sdg/11"}],"grants":[],"datasets":[],"versions":["https://openalex.org/W4378364371"],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4251418261","https://openalex.org/W4251195004","https://openalex.org/W4242807451","https://openalex.org/W2977645287","https://openalex.org/W2167436245","https://openalex.org/W2154758532","https://openalex.org/W2133704721","https://openalex.org/W2035792466","https://openalex.org/W1972675643","https://openalex.org/W126301054"],"abstract_inverted_index":{"The":[0,33,111,219],"key":[1],"to":[2,6,24,39,76,124,169,230],"traffic":[3,13,43,58,65,82,104,152,160,212],"prediction":[4,59],"is":[5,22,38,46,113],"accurately":[7,40],"depict":[8],"the":[9,26,30,52,56,69,74,85,102,114,118,125,185,207,232,239],"temporal":[10],"dynamics":[11],"of":[12,29,35,116,121,127,191],"flow":[14,213],"traveling":[15],"in":[16,51],"a":[17,62,93,139,146,196,215],"road":[18,31,53],"network,":[19,54],"so":[20],"it":[21],"important":[23],"model":[25,77,92,180,184,231,241],"spatial":[27,36,78,97,177,203,233],"dependence":[28,37,79,234],"network.":[32],"essence":[34],"describe":[41],"how":[42],"information":[44,83,105],"transmission":[45,120,194],"affected":[47],"by":[48,80,195,214],"other":[49],"nodes":[50],"and":[55,95,175,188,245],"GNN-based":[57],"model,":[60],"as":[61,145],"benchmark":[63],"for":[64,73,108,131,242],"prediction,":[66],"has":[67,235],"become":[68],"most":[70],"common":[71],"method":[72],"ability":[75],"transmitting":[81,147],"with":[84],"message":[86],"passing":[87],"mechanism.":[88],"However,":[89],"existing":[90],"methods":[91],"local":[94],"static":[96],"dependence,":[98,204],"which":[99,154,172],"cannot":[100],"transmit":[101],"global-dynamic":[103],"(GDTi)":[106],"required":[107],"long-term":[109,132,248],"prediction.":[110,249],"challenge":[112],"difficulty":[115],"detecting":[117],"precise":[119],"GDTi":[122,142],"due":[123],"uncertainty":[126],"individual":[128],"transport,":[129],"especially":[130],"transmission.":[133],"In":[134],"this":[135],"paper,":[136],"we":[137,183,205],"propose":[138,164],"new":[140],"hypothesis\\:":[141],"behaves":[143],"macroscopically":[144],"causal":[148,186,189],"relationship":[149],"(TCR)":[150],"underlying":[151,210],"flow,":[153],"remains":[155],"stable":[156,208],"under":[157],"dynamic":[158,176,202,211],"changing":[159],"flow.":[161],"We":[162],"further":[163],"spatial-temporal":[165,197],"Granger":[166,216],"causality":[167,217],"(STGC)":[168],"express":[170],"TCR,":[171],"models":[173,225],"global":[174,181,193],"dependence.":[178],"To":[179,200],"transmission,":[182],"order":[187],"lag":[190],"TCRs":[192],"alignment":[198],"algorithm.":[199],"capture":[201],"approximate":[206],"TCR":[209],"test.":[218],"experimental":[220],"results":[221,237],"on":[222],"three":[223],"backbone":[224],"show":[226],"that":[227],"using":[228],"STGC":[229],"better":[236],"than":[238],"original":[240],"45":[243],"min":[244],"1":[246],"h":[247]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4307937710","counts_by_year":[],"updated_date":"2024-12-09T21:34:33.874663","created_date":"2022-11-06"}