{"id":"https://openalex.org/W4307784046","doi":"https://doi.org/10.48550/arxiv.2210.15911","title":"Joint Semantic Transfer Network for IoT Intrusion Detection","display_name":"Joint Semantic Transfer Network for IoT Intrusion Detection","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4307784046","doi":"https://doi.org/10.48550/arxiv.2210.15911"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2210.15911","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2210.15911","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5102502768","display_name":"Jiashu Wu","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wu, Jiashu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5070306114","display_name":"Yang Wang","orcid":"https://orcid.org/0000-0001-9438-6060"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Yang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5011303920","display_name":"Binhui Xie","orcid":"https://orcid.org/0000-0002-7324-9777"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xie, Binhui","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100415892","display_name":"Shuang Li","orcid":"https://orcid.org/0000-0001-9142-5036"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Shuang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100679349","display_name":"Hao Dai","orcid":"https://orcid.org/0000-0002-6133-9927"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Dai, Hao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5002681819","display_name":"Kejiang Ye","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ye, Kejiang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5012773300","display_name":"Cheng\u2010Zhong Xu","orcid":"https://orcid.org/0000-0001-9480-0356"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xu, Chengzhong","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":59},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10400","display_name":"Network Security and Intrusion Detection","score":0.9979,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10400","display_name":"Network Security and Intrusion Detection","score":0.9979,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9952,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11241","display_name":"Advanced Malware Detection Techniques","score":0.9784,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.4939962},{"id":"https://openalex.org/keywords/categorical-variable","display_name":"Categorical variable","score":0.420439}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.75003695},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.4939962},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4910045},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.46972075},{"id":"https://openalex.org/C36503486","wikidata":"https://www.wikidata.org/wiki/Q11235244","display_name":"Domain (mathematical analysis)","level":2,"score":0.43929064},{"id":"https://openalex.org/C35525427","wikidata":"https://www.wikidata.org/wiki/Q745881","display_name":"Intrusion detection system","level":2,"score":0.42607555},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.42219704},{"id":"https://openalex.org/C5274069","wikidata":"https://www.wikidata.org/wiki/Q2285707","display_name":"Categorical variable","level":2,"score":0.420439},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.30880627},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.12832347},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2210.15911","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2210.15911","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2210.15911","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.72,"id":"https://metadata.un.org/sdg/10","display_name":"Reduced inequalities"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W65104662","https://openalex.org/W4386799044","https://openalex.org/W4297454206","https://openalex.org/W2773208253","https://openalex.org/W2560646951","https://openalex.org/W2362286668","https://openalex.org/W2153339597","https://openalex.org/W2133382151","https://openalex.org/W1871748041","https://openalex.org/W1528412344"],"abstract_inverted_index":{"In":[0],"this":[1],"paper,":[2],"we":[3],"propose":[4],"a":[5,22,32,71,98,129,175,195,201,221],"Joint":[6],"Semantic":[7],"Transfer":[8],"Network":[9],"(JSTN)":[10],"towards":[11],"effective":[12],"intrusion":[13,36,43,59],"detection":[14],"for":[15],"large-scale":[16],"scarcely":[17],"labelled":[18],"IoT":[19,42],"domain.":[20,142],"As":[21],"multi-source":[23],"heterogeneous":[24],"domain":[25,38,45,58,85,100,188],"adaptation":[26],"(MS-HDA)":[27],"method,":[28],"the":[29,65,93,110,115,121,135,140,147,155,161,172,182,210,213,236],"JSTN":[30,62,214],"integrates":[31],"knowledge":[33,94,105,131,151,158],"rich":[34],"network":[35],"(NI)":[37],"and":[39,49,73,83,102,168,189,197,235],"another":[40],"small-scale":[41],"(II)":[44],"as":[46],"source":[47,81,136],"domains,":[48],"preserves":[50],"intrinsic":[51],"semantic":[52,79,124,164],"properties":[53],"to":[54,69,91,113,139,153],"assist":[55],"target":[56,141,186],"II":[57,84,187],"detection.":[60],"The":[61,77,143,228],"jointly":[63],"transfers":[64,134],"following":[66],"three":[67],"semantics":[68],"learn":[70],"domain-invariant":[72],"discriminative":[74],"feature":[75,117,192],"representation.":[76],"scenario":[78],"endows":[80],"NI":[82],"with":[86,171],"characteristics":[87],"from":[88,194],"each":[89,232],"other":[90],"ease":[92],"transfer":[95,125],"process":[96],"via":[97,128],"confused":[99],"discriminator":[101],"categorical":[103,137],"distribution":[104,138],"preservation.":[106],"It":[107],"also":[108,240],"reduces":[109],"source-target":[111,144],"discrepancy":[112],"make":[114],"shared":[116],"space":[118],"domain-invariant.":[119],"Meanwhile,":[120],"weighted":[122],"implicit":[123],"boosts":[126],"discriminability":[127],"fine-grained":[130],"preservation,":[132],"which":[133,180],"divergence":[145],"guides":[146],"importance":[148],"weighting":[149],"during":[150],"preservation":[152],"reflect":[154],"degree":[156],"of":[157,174,184,212,223,231],"learning.":[159],"Additionally,":[160],"hierarchical":[162],"explicit":[163],"alignment":[165,170],"performs":[166],"centroid-level":[167],"representative-level":[169],"help":[173],"geometric":[176],"similarity-aware":[177],"pseudo-label":[178],"refiner,":[179],"exploits":[181],"value":[183],"unlabelled":[185],"explicitly":[190],"aligns":[191],"representations":[193],"global":[196],"local":[198],"perspective":[199],"in":[200],"concentrated":[202],"manner.":[203],"Comprehensive":[204],"experiments":[205],"on":[206,219],"various":[207],"tasks":[208],"verify":[209],"superiority":[211],"against":[215],"state-of-the-art":[216],"comparing":[217],"methods,":[218],"average":[220],"10.3%":[222],"accuracy":[224],"boost":[225],"is":[226],"achieved.":[227],"statistical":[229],"soundness":[230],"constituting":[233],"component":[234],"computational":[237],"efficiency":[238],"are":[239],"verified.":[241]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4307784046","counts_by_year":[],"updated_date":"2025-03-02T00:12:42.755873","created_date":"2022-11-05"}