{"id":"https://openalex.org/W4307310169","doi":"https://doi.org/10.48550/arxiv.2210.12409","title":"Recurrence Boosts Diversity! Revisiting Recurrent Latent Variable in Transformer-Based Variational AutoEncoder for Diverse Text Generation","display_name":"Recurrence Boosts Diversity! Revisiting Recurrent Latent Variable in Transformer-Based Variational AutoEncoder for Diverse Text Generation","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4307310169","doi":"https://doi.org/10.48550/arxiv.2210.12409"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2210.12409","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2210.12409","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5048118968","display_name":"Jinyi Hu","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hu, Jinyi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5040961637","display_name":"Xiaoyuan Yi","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yi, Xiaoyuan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5107145907","display_name":"Wenhao Li","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Wenhao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5046448314","display_name":"Maosong Sun","orcid":"https://orcid.org/0000-0002-6011-6115"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Sun, Maosong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5044651577","display_name":"Xing Xie","orcid":"https://orcid.org/0000-0002-8608-8482"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xie, Xing","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":59},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9901,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9901,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9856,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13910","display_name":"Computational and Text Analysis Methods","score":0.9471,"subfield":{"id":"https://openalex.org/subfields/3300","display_name":"General Social Sciences"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/autoencoder","display_name":"Autoencoder","score":0.6829288},{"id":"https://openalex.org/keywords/trace","display_name":"TRACE (psycholinguistics)","score":0.49884677}],"concepts":[{"id":"https://openalex.org/C51167844","wikidata":"https://www.wikidata.org/wiki/Q4422623","display_name":"Latent variable","level":2,"score":0.7175727},{"id":"https://openalex.org/C101738243","wikidata":"https://www.wikidata.org/wiki/Q786435","display_name":"Autoencoder","level":3,"score":0.6829288},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5637847},{"id":"https://openalex.org/C118505674","wikidata":"https://www.wikidata.org/wiki/Q42586063","display_name":"Encoder","level":2,"score":0.5260275},{"id":"https://openalex.org/C75291252","wikidata":"https://www.wikidata.org/wiki/Q1315756","display_name":"TRACE (psycholinguistics)","level":2,"score":0.49884677},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.41929403},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.37354684},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.35141802},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.3296467},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.1383999},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2210.12409","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2210.12409","pdf_url":"http://arxiv.org/pdf/2210.12409","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2210.12409","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2210.12409","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4297051394","https://openalex.org/W3131327266","https://openalex.org/W3013693939","https://openalex.org/W2988134182","https://openalex.org/W2803255133","https://openalex.org/W2752972570","https://openalex.org/W2734887215","https://openalex.org/W2566616303","https://openalex.org/W2159052453","https://openalex.org/W2145836866"],"abstract_inverted_index":{"Variational":[0],"Auto-Encoder":[1],"(VAE)":[2],"has":[3],"been":[4],"widely":[5],"adopted":[6],"in":[7,31],"text":[8,76],"generation.":[9],"Among":[10],"many":[11],"variants,":[12],"recurrent":[13,44,63],"VAE":[14,64],"learns":[15],"token-wise":[16],"latent":[17,71,105,120],"variables":[18,72,121],"with":[19,73,83],"each":[20,116],"conditioned":[21],"on":[22,69,140],"the":[23,32,47,80,101,113,129],"preceding":[24,119],"ones,":[25],"which":[26,96],"captures":[27],"sequential":[28],"variability":[29],"better":[30],"era":[33],"of":[34,104,115,128,136],"RNN.":[35],"However,":[36],"it":[37],"is":[38],"unclear":[39],"how":[40],"to":[41,52],"incorporate":[42],"such":[43],"dynamics":[45],"into":[46],"recently":[48],"dominant":[49],"Transformer":[50],"due":[51],"its":[53],"parallelism.":[54],"In":[55],"this":[56],"work,":[57],"we":[58,87],"propose":[59],"TRACE,":[60],"a":[61,124,133],"Transformer-based":[62],"structure.":[65],"TRACE":[66,110,150],"imposes":[67],"recurrence":[68],"segment-wise":[70],"arbitrarily":[74],"separated":[75],"segments":[77],"and":[78,118,122,143],"constructs":[79],"posterior":[81],"distribution":[82],"residual":[84],"parameterization.":[85],"Besides,":[86],"design":[88],"an":[89],"acceleration":[90],"method":[91],"by":[92],"approximating":[93],"idempotent":[94],"matrices,":[95],"allows":[97],"parallelism":[98],"while":[99,155],"maintaining":[100,156],"conditional":[102,145],"dependence":[103],"variables.":[106],"We":[107],"demonstrate":[108],"that":[109,149],"could":[111],"enhance":[112],"entanglement":[114],"segment":[117],"deduce":[123],"non-zero":[125],"lower":[126],"bound":[127],"KL":[130],"term,":[131],"providing":[132],"theoretical":[134],"guarantee":[135],"generation":[137,146,158],"diversity.":[138],"Experiments":[139],"two":[141],"unconditional":[142],"one":[144],"tasks":[147],"show":[148],"achieves":[151],"significantly":[152],"improved":[153],"diversity":[154],"satisfactory":[157],"quality.":[159]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4307310169","counts_by_year":[],"updated_date":"2025-02-28T22:07:53.748496","created_date":"2022-10-31"}