{"id":"https://openalex.org/W4307309259","doi":"https://doi.org/10.48550/arxiv.2210.12353","title":"Leveraging Large Language Models for Multiple Choice Question Answering","display_name":"Leveraging Large Language Models for Multiple Choice Question Answering","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4307309259","doi":"https://doi.org/10.48550/arxiv.2210.12353"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2210.12353","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2210.12353","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5084800356","display_name":"Joshua A. Robinson","orcid":"https://orcid.org/0000-0002-1513-7187"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Robinson, Joshua","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5054415680","display_name":"Christopher Michael Rytting","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Rytting, Christopher Michael","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5112014357","display_name":"D. L. Wingate","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wingate, David","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":34,"citation_normalized_percentile":{"value":0.949807,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":97,"max":98},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10201","display_name":"Speech Recognition and Synthesis","score":0.957,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/normalization","display_name":"Normalization","score":0.5333386},{"id":"https://openalex.org/keywords/symbol","display_name":"Symbol (formal)","score":0.44434106}],"concepts":[{"id":"https://openalex.org/C44291984","wikidata":"https://www.wikidata.org/wiki/Q1074173","display_name":"Question answering","level":2,"score":0.6584355},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6481613},{"id":"https://openalex.org/C136886441","wikidata":"https://www.wikidata.org/wiki/Q926129","display_name":"Normalization (sociology)","level":2,"score":0.5333386},{"id":"https://openalex.org/C81917197","wikidata":"https://www.wikidata.org/wiki/Q628760","display_name":"Selection (genetic algorithm)","level":2,"score":0.46120638},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.44480544},{"id":"https://openalex.org/C134400042","wikidata":"https://www.wikidata.org/wiki/Q2372244","display_name":"Symbol (formal)","level":2,"score":0.44434106},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.33179325},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.32770658},{"id":"https://openalex.org/C144024400","wikidata":"https://www.wikidata.org/wiki/Q21201","display_name":"Sociology","level":0,"score":0.07996228},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.07904935},{"id":"https://openalex.org/C19165224","wikidata":"https://www.wikidata.org/wiki/Q23404","display_name":"Anthropology","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2210.12353","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2210.12353","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2210.12353","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/4","display_name":"Quality education","score":0.54}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W3208425359","https://openalex.org/W3082787378","https://openalex.org/W2944728705","https://openalex.org/W2904022177","https://openalex.org/W2591697403","https://openalex.org/W2387743295","https://openalex.org/W2384605597","https://openalex.org/W2366230879","https://openalex.org/W2136007095","https://openalex.org/W2115758952"],"abstract_inverted_index":{"While":[0],"large":[1],"language":[2],"models":[3],"(LLMs)":[4],"like":[5,44],"GPT-3":[6],"have":[7,38,93],"achieved":[8],"impressive":[9],"results":[10],"on":[11,51,130],"multiple":[12,165],"choice":[13,166],"question":[14,53,84],"answering":[15],"(MCQA)":[16],"tasks":[17,37],"in":[18],"the":[19,29,33,55,64,67,83,89,96,109,121,134,140,154,190,195,205,208,212],"zero,":[20],"one,":[21],"and":[22,59,85,92,119,126,202],"few-shot":[23],"settings,":[24],"they":[25],"generally":[26],"lag":[27],"behind":[28],"MCQA":[30,36,213],"state":[31],"of":[32,123,215],"art":[34],"(SOTA).":[35],"traditionally":[39],"been":[40,218],"presented":[41],"to":[42,81,88,111,137,149],"LLMs":[43,216],"cloze":[45],"tasks.":[46],"An":[47],"LLM":[48,90,141,160],"is":[49,63,80,143],"conditioned":[50],"a":[52,180],"(without":[54],"associated":[56,100],"answer":[57,86,104,114,127,131,151],"options)":[58],"its":[60,102],"chosen":[61,103],"option":[62,128],"one":[65],"assigned":[66],"highest":[68],"probability":[69],"after":[70],"normalization":[71],"(for":[72],"length,":[73],"etc.).":[74],"A":[75],"more":[76],"natural":[77,135,191],"prompting":[78],"approach":[79,107,136,192,197],"present":[82],"options":[87,152],"jointly":[91],"it":[94,142],"output":[95],"symbol":[97,167],"(e.g.,":[98],"\"A\")":[99],"with":[101,145,153,182,189,194,207],"option.":[105],"This":[106,171],"allows":[108],"model":[110,181],"explicitly":[112],"compare":[113],"options,":[115],"reduces":[116],"computational":[117],"costs,":[118],"mitigates":[120],"effects":[122],"tokenization":[124],"scheme":[125],"representations":[129],"selection.":[132],"For":[133],"be":[138,147],"effective,":[139],"used":[144],"must":[146],"able":[148],"associate":[150],"symbols":[155],"that":[156,179,211],"represent":[157],"them.":[158],"The":[159],"needs":[161],"what":[162],"we":[163],"term":[164],"binding":[168],"(MCSB)":[169],"ability.":[170],"ability":[172,185,214],"varies":[173],"greatly":[174],"by":[175],"model.":[176],"We":[177],"show":[178],"high":[183],"MCSB":[184],"performs":[186],"much":[187],"better":[188],"than":[193],"traditional":[196],"across":[198],"20":[199],"diverse":[200],"datasets":[201],"largely":[203],"closes":[204],"gap":[206],"SOTA,":[209],"suggesting":[210],"has":[217],"previously":[219],"underestimated.":[220]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4307309259","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2024,"cited_by_count":15},{"year":2023,"cited_by_count":18}],"updated_date":"2025-03-23T18:33:19.100112","created_date":"2022-10-31"}