{"id":"https://openalex.org/W4307413298","doi":"https://doi.org/10.48550/arxiv.2210.12310","title":"Tools for Extracting Spatio-Temporal Patterns in Meteorological Image Sequences: From Feature Engineering to Attention-Based Neural Networks","display_name":"Tools for Extracting Spatio-Temporal Patterns in Meteorological Image Sequences: From Feature Engineering to Attention-Based Neural Networks","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4307413298","doi":"https://doi.org/10.48550/arxiv.2210.12310"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2210.12310","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2210.12310","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5087017686","display_name":"Akansha Singh Bansal","orcid":"https://orcid.org/0000-0002-9637-7800"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Bansal, Akansha Singh","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100644396","display_name":"Yoonjin Lee","orcid":"https://orcid.org/0000-0002-2092-3078"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lee, Yoonjin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5045919940","display_name":"Kyle Hilburn","orcid":"https://orcid.org/0000-0002-2078-9884"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hilburn, Kyle","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5082309905","display_name":"Imme Ebert\u2010Uphoff","orcid":"https://orcid.org/0000-0001-6470-1947"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ebert-Uphoff, Imme","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":10,"citation_normalized_percentile":{"value":0.747412,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":91,"max":92},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11659","display_name":"Advanced Image Fusion Techniques","score":0.9839,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11659","display_name":"Advanced Image Fusion Techniques","score":0.9839,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10111","display_name":"Remote Sensing in Agriculture","score":0.9818,"subfield":{"id":"https://openalex.org/subfields/2303","display_name":"Ecology"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11164","display_name":"Remote Sensing and LiDAR Applications","score":0.9773,"subfield":{"id":"https://openalex.org/subfields/2305","display_name":"Environmental Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.5173604},{"id":"https://openalex.org/keywords/feature-engineering","display_name":"Feature Engineering","score":0.49420598},{"id":"https://openalex.org/keywords/feature-vector","display_name":"Feature vector","score":0.491495},{"id":"https://openalex.org/keywords/convolution","display_name":"Convolution (computer science)","score":0.447014},{"id":"https://openalex.org/keywords/transfer-of-learning","display_name":"Transfer of learning","score":0.43467456}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.69877845},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.60172796},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5445833},{"id":"https://openalex.org/C2779343474","wikidata":"https://www.wikidata.org/wiki/Q3109175","display_name":"Context (archaeology)","level":2,"score":0.5236121},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.5173604},{"id":"https://openalex.org/C2778827112","wikidata":"https://www.wikidata.org/wiki/Q22245680","display_name":"Feature engineering","level":3,"score":0.49420598},{"id":"https://openalex.org/C83665646","wikidata":"https://www.wikidata.org/wiki/Q42139305","display_name":"Feature vector","level":2,"score":0.491495},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.45054612},{"id":"https://openalex.org/C45347329","wikidata":"https://www.wikidata.org/wiki/Q5166604","display_name":"Convolution (computer science)","level":3,"score":0.447014},{"id":"https://openalex.org/C150899416","wikidata":"https://www.wikidata.org/wiki/Q1820378","display_name":"Transfer of learning","level":2,"score":0.43467456},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.43442428},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.42683083},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.41611227},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3573612},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.17250076},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C166957645","wikidata":"https://www.wikidata.org/wiki/Q23498","display_name":"Archaeology","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2210.12310","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2210.12310","pdf_url":"http://arxiv.org/pdf/2210.12310","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2210.12310","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2210.12310","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4290188444","https://openalex.org/W3183901164","https://openalex.org/W3176438653","https://openalex.org/W3167935049","https://openalex.org/W3135818718","https://openalex.org/W3127975138","https://openalex.org/W3003905048","https://openalex.org/W2964954556","https://openalex.org/W2951211570","https://openalex.org/W2253429366"],"abstract_inverted_index":{"Atmospheric":[0],"processes":[1],"involve":[2],"both":[3,58,173],"space":[4,59,174],"and":[5,60,69,100,115,149,175,188,207],"time.":[6,61],"This":[7],"is":[8,45],"why":[9],"human":[10],"analysis":[11,33,148,152],"of":[12,23,51,55,111,123,183,197,224,229],"atmospheric":[13],"imagery":[14],"can":[15,160],"often":[16],"extract":[17,75],"more":[18],"information":[19],"from":[20,27,103,204],"animated":[21],"loops":[22],"image":[24,42,125,145,198],"sequences":[25,43,199],"than":[26],"individual":[28],"images.":[29],"Automating":[30],"such":[31,127],"an":[32,109,222],"requires":[34],"the":[35,52,88,121,135,139,179,189,195,212],"ability":[36],"to":[37,74,133,169,194,210],"identify":[38],"spatio-temporal":[39,76],"patterns":[40,56,171],"in":[41,57,93,138,164,172,185,238],"which":[44,230],"a":[46],"very":[47],"challenging":[48],"task,":[49],"because":[50],"endless":[53],"possibilities":[54],"In":[62,82],"this":[63,83,239],"paper":[64],"we":[65,85,107],"review":[66],"different":[67,113,156],"concepts":[68,114],"techniques":[70,116],"that":[71,117,220],"are":[72,118,231],"useful":[73],"context":[77],"specifically":[78],"for":[79,90,120,214],"meteorological":[80,124,142],"applications.":[81],"survey":[84,202],"first":[86],"motivate":[87],"need":[89,213],"these":[91,225],"approaches":[92],"meteorology":[94],"using":[95,141],"two":[96],"applications,":[97],"solar":[98],"forecasting":[99],"detecting":[101],"convection":[102],"satellite":[104],"imagery.":[105],"Then":[106],"provide":[108],"overview":[110,223],"many":[112,228],"helpful":[119],"interpretation":[122,196],"sequences,":[126],"as":[128],"(1)":[129],"feature":[130],"engineering":[131],"methods":[132],"strengthen":[134],"desired":[136],"signal":[137],"input,":[140],"knowledge,":[143],"classic":[144],"processing,":[146],"harmonic":[147],"topological":[150],"data":[151],"(2)":[153],"explain":[154],"how":[155],"convolution":[157],"filters":[158],"(2D/3D/LSTM-convolution)":[159],"be":[161],"utilized":[162],"strategically":[163],"convolutional":[165],"neural":[166,186],"network":[167],"architectures":[168],"find":[170],"time":[176],"(3)":[177],"discuss":[178],"powerful":[180,190],"new":[181],"concept":[182],"'attention'":[184],"networks":[187],"abilities":[191],"it":[192],"brings":[193],"(4)":[200],"briefly":[201],"strategies":[203],"unsupervised,":[205],"self-supervised":[206],"transfer":[208],"learning":[209],"reduce":[211],"large":[215],"labeled":[216],"datasets.":[217],"We":[218],"hope":[219],"presenting":[221],"tools":[226],"-":[227,233],"underutilized":[232],"will":[234],"help":[235],"accelerate":[236],"progress":[237],"area.":[240]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4307413298","counts_by_year":[{"year":2023,"cited_by_count":10}],"updated_date":"2024-12-17T09:07:09.284923","created_date":"2022-11-01"}