{"id":"https://openalex.org/W4307076972","doi":"https://doi.org/10.48550/arxiv.2210.11039","title":"Entire Space Counterfactual Learning: Tuning, Analytical Properties and Industrial Applications","display_name":"Entire Space Counterfactual Learning: Tuning, Analytical Properties and Industrial Applications","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4307076972","doi":"https://doi.org/10.48550/arxiv.2210.11039"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2210.11039","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2210.11039","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100704211","display_name":"Hao Wang","orcid":"https://orcid.org/0000-0002-3243-487X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Hao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100619475","display_name":"Zhichao Chen","orcid":"https://orcid.org/0000-0002-7150-4914"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chen, Zhichao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5082814141","display_name":"Jiajun Fan","orcid":"https://orcid.org/0000-0003-3721-5745"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Fan, Jiajun","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102000308","display_name":"Yuxin Huang","orcid":"https://orcid.org/0000-0003-3056-4168"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Huang, Yuxin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100636236","display_name":"Weiming Liu","orcid":"https://orcid.org/0000-0002-6245-6287"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Liu, Weiming","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5034516630","display_name":"Xinggao Liu","orcid":"https://orcid.org/0000-0002-0948-1942"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Liu, Xinggao","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.709386,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":69,"max":75},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12101","display_name":"Advanced Bandit Algorithms Research","score":0.9938,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T12101","display_name":"Advanced Bandit Algorithms Research","score":0.9938,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10203","display_name":"Recommender Systems and Techniques","score":0.9837,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11165","display_name":"Image and Video Quality Assessment","score":0.9255,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/leverage","display_name":"Leverage (statistics)","score":0.8214004},{"id":"https://openalex.org/keywords/baseline","display_name":"Baseline (sea)","score":0.43258953}],"concepts":[{"id":"https://openalex.org/C108650721","wikidata":"https://www.wikidata.org/wiki/Q1783253","display_name":"Counterfactual thinking","level":2,"score":0.93775964},{"id":"https://openalex.org/C153083717","wikidata":"https://www.wikidata.org/wiki/Q6535263","display_name":"Leverage (statistics)","level":2,"score":0.8214004},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.640413},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.4999087},{"id":"https://openalex.org/C2778572836","wikidata":"https://www.wikidata.org/wiki/Q380933","display_name":"Space (punctuation)","level":2,"score":0.4763936},{"id":"https://openalex.org/C12725497","wikidata":"https://www.wikidata.org/wiki/Q810247","display_name":"Baseline (sea)","level":2,"score":0.43258953},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4297832},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.40373054},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.32518667},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.07978529},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C111368507","wikidata":"https://www.wikidata.org/wiki/Q43518","display_name":"Oceanography","level":1,"score":0.0},{"id":"https://openalex.org/C111472728","wikidata":"https://www.wikidata.org/wiki/Q9471","display_name":"Epistemology","level":1,"score":0.0},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0},{"id":"https://openalex.org/C201995342","wikidata":"https://www.wikidata.org/wiki/Q682496","display_name":"Systems engineering","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2210.11039","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2210.11039","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2210.11039","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Industry, innovation and infrastructure","score":0.62,"id":"https://metadata.un.org/sdg/9"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4384133558","https://openalex.org/W4286970243","https://openalex.org/W3201448254","https://openalex.org/W3170174360","https://openalex.org/W3028847759","https://openalex.org/W3025615835","https://openalex.org/W2393688264","https://openalex.org/W2390660599","https://openalex.org/W2066431708","https://openalex.org/W173210993"],"abstract_inverted_index":{"As":[0],"a":[1,124,136],"basic":[2],"research":[3],"problem":[4],"for":[5,88,107],"building":[6],"effective":[7],"recommender":[8],"systems,":[9],"post-click":[10],"conversion":[11,53,116],"rate":[12],"(CVR)":[13],"estimation":[14,85],"has":[15],"long":[16],"been":[17],"plagued":[18],"by":[19],"sample":[20],"selection":[21],"bias":[22,86],"and":[23,144,169,185,188],"data":[24,30],"sparsity":[25,31],"issues.":[26],"To":[27,149],"address":[28],"the":[29,42,66,92,99,111,151,154,182],"issue,":[32],"prevalent":[33],"methods":[34],"based":[35],"on":[36],"entire":[37,79,128],"space":[38,80,129],"multi-task":[39,81,131],"model":[40,132],"leverage":[41],"sequential":[43],"pattern":[44],"of":[45,64,68,77,153],"user":[46],"actions,":[47],"i.e.":[48],"exposure":[49],"$\\rightarrow$":[50,52],"click":[51,114],"to":[54,115,140],"construct":[55],"auxiliary":[56],"learning":[57],"tasks.":[58],"However,":[59],"they":[60],"still":[61],"fall":[62],"short":[63],"guaranteeing":[65],"unbiasedness":[67],"CVR":[69,89,93,175],"estimates.":[70],"This":[71,120],"paper":[72,121,158],"theoretically":[73],"demonstrates":[74],"two":[75],"defects":[76],"these":[78],"models:":[82],"(1)":[83],"inherent":[84],"(IEB)":[87],"estimation,":[90,109,176],"where":[91,110,177],"estimate":[94],"is":[95],"inherently":[96],"higher":[97],"than":[98],"ground":[100],"truth;":[101],"(2)":[102],"potential":[103],"independence":[104],"priority":[105],"(PIP)":[106],"CTCVR":[108],"causality":[112],"from":[113],"might":[117],"be":[118],"overlooked.":[119],"further":[122],"proposes":[123],"principled":[125],"method":[126],"named":[127],"counterfactual":[130,137],"(ESCM$^2$),":[133],"which":[134],"employs":[135],"risk":[138],"minimizer":[139],"handle":[141],"both":[142],"IEB":[143,184],"PIP":[145,186],"issues":[146,187],"at":[147],"once.":[148],"demonstrate":[150],"effectiveness":[152,172],"proposed":[155],"method,":[156],"this":[157],"explores":[159],"its":[160,166,171],"parameter":[161],"tuning":[162],"in":[163,173],"practice,":[164],"derives":[165],"analytic":[167],"properties,":[168],"showcases":[170],"industrial":[174],"ESCM$^2$":[178],"can":[179],"effectively":[180],"alleviate":[181],"intrinsic":[183],"outperform":[189],"baseline":[190],"models.":[191]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4307076972","counts_by_year":[{"year":2023,"cited_by_count":2}],"updated_date":"2025-04-21T10:59:27.263439","created_date":"2022-10-24"}