{"id":"https://openalex.org/W4307076587","doi":"https://doi.org/10.48550/arxiv.2210.10973","title":"Scalable Bayesian Transformed Gaussian Processes","display_name":"Scalable Bayesian Transformed Gaussian Processes","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4307076587","doi":"https://doi.org/10.48550/arxiv.2210.10973"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2210.10973","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2210.10973","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5016939843","display_name":"Xinran Zhu","orcid":"https://orcid.org/0000-0003-0064-4861"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhu, Xinran","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5110275560","display_name":"Leo Huang","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Huang, Leo","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5018118360","display_name":"Cameron Ibrahim","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ibrahim, Cameron","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5014998139","display_name":"Eric Hans Lee","orcid":"https://orcid.org/0000-0001-6606-8495"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lee, Eric Hans","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5073697071","display_name":"David Bindel","orcid":"https://orcid.org/0000-0002-8733-5799"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Bindel, David","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12814","display_name":"Gaussian Processes and Bayesian Inference","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12814","display_name":"Gaussian Processes and Bayesian Inference","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10876","display_name":"Fault Detection and Control Systems","score":0.9774,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.96,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/hyperparameter","display_name":"Hyperparameter","score":0.69563067},{"id":"https://openalex.org/keywords/kernel","display_name":"Kernel (algebra)","score":0.5152436}],"concepts":[{"id":"https://openalex.org/C8642999","wikidata":"https://www.wikidata.org/wiki/Q4171168","display_name":"Hyperparameter","level":2,"score":0.69563067},{"id":"https://openalex.org/C61326573","wikidata":"https://www.wikidata.org/wiki/Q1496376","display_name":"Gaussian process","level":3,"score":0.67309535},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6718922},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.5493141},{"id":"https://openalex.org/C74193536","wikidata":"https://www.wikidata.org/wiki/Q574844","display_name":"Kernel (algebra)","level":2,"score":0.5152436},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.49431705},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.45314842},{"id":"https://openalex.org/C160234255","wikidata":"https://www.wikidata.org/wiki/Q812535","display_name":"Bayesian inference","level":3,"score":0.445436},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.41225076},{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.40463358},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.24752423},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2210.10973","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2210.10973","pdf_url":"http://arxiv.org/pdf/2210.10973","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2210.10973","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2210.10973","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/10","display_name":"Reduced inequalities","score":0.47}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4380558509","https://openalex.org/W4294619368","https://openalex.org/W4286748465","https://openalex.org/W3196933554","https://openalex.org/W3128856671","https://openalex.org/W3118984993","https://openalex.org/W2505726097","https://openalex.org/W2407375987","https://openalex.org/W2144336328","https://openalex.org/W2141609920"],"abstract_inverted_index":{"The":[0,55],"Bayesian":[1,15,37,77],"transformed":[2],"Gaussian":[3,20],"process":[4,21],"(BTG)":[5],"model,":[6],"proposed":[7],"by":[8],"Kedem":[9],"and":[10,23,32,47,80,91,108,118,131],"Oliviera,":[11],"is":[12,52],"a":[13,26],"fully":[14,36],"counterpart":[16],"to":[17,70,84,112,126],"the":[18,76],"warped":[19],"(WGP)":[22],"marginalizes":[24],"out":[25],"joint":[27],"prior":[28],"over":[29,128,150],"input":[30],"warping":[31],"kernel":[33],"hyperparameters.":[34],"This":[35],"treatment":[38],"of":[39],"hyperparameters":[40],"often":[41],"provides":[42],"more":[43],"accurate":[44],"regression":[45],"estimates":[46],"superior":[48,147],"uncertainty":[49],"propagation,":[50],"but":[51],"prohibitively":[53],"expensive.":[54],"BTG":[56,133,145],"posterior":[57],"predictive":[58],"distribution,":[59],"itself":[60],"estimated":[61],"through":[62],"high-dimensional":[63],"integration,":[64],"must":[65],"be":[66],"inverted":[67],"in":[68,82],"order":[69],"perform":[71],"model":[72,116,119],"prediction.":[73],"To":[74],"make":[75],"approach":[78],"practical":[79],"comparable":[81],"speed":[83],"maximum-likelihood":[85],"estimation":[86],"(MLE),":[87],"we":[88],"propose":[89],"principled":[90],"fast":[92,115],"techniques":[93],"for":[94],"computing":[95],"with":[96,134],"BTG.":[97],"Our":[98],"framework":[99],"uses":[100],"doubly":[101],"sparse":[102],"quadrature":[103],"rules,":[104],"tight":[105],"quantile":[106],"bounds,":[107],"rank-one":[109],"matrix":[110],"algebra":[111],"enable":[113],"both":[114],"prediction":[117],"selection.":[120],"These":[121],"scalable":[122],"methods":[123],"allow":[124],"us":[125],"regress":[127],"higher-dimensional":[129],"datasets":[130],"apply":[132],"layered":[135],"transformations":[136],"that":[137,144],"greatly":[138],"improve":[139],"its":[140],"expressibility.":[141],"We":[142],"demonstrate":[143],"achieves":[146],"empirical":[148],"performance":[149],"MLE-based":[151],"models.":[152]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4307076587","counts_by_year":[],"updated_date":"2024-12-15T20:49:00.845872","created_date":"2022-10-24"}