{"id":"https://openalex.org/W4306802336","doi":"https://doi.org/10.48550/arxiv.2210.08847","title":"tegdet: An extensible Python Library for Anomaly Detection using Time-Evolving Graphs","display_name":"tegdet: An extensible Python Library for Anomaly Detection using Time-Evolving Graphs","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4306802336","doi":"https://doi.org/10.48550/arxiv.2210.08847"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2210.08847","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2210.08847","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5028980441","display_name":"Simona Bernardi","orcid":"https://orcid.org/0000-0002-2605-6243"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Bernardi, Simona","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5068314432","display_name":"Jos\u00e9 Merseguer","orcid":"https://orcid.org/0000-0001-5538-3553"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Merseguer, Jos\u00e9","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5058490916","display_name":"Ra\u00fal Javierre","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Javierre, Ra\u00fal","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.9926,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10400","display_name":"Network Security and Intrusion Detection","score":0.9918,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/python","display_name":"Python","score":0.84001076},{"id":"https://openalex.org/keywords/univariate","display_name":"Univariate","score":0.60945946},{"id":"https://openalex.org/keywords/anomaly","display_name":"Anomaly (physics)","score":0.423849}],"concepts":[{"id":"https://openalex.org/C519991488","wikidata":"https://www.wikidata.org/wiki/Q28865","display_name":"Python (programming language)","level":2,"score":0.84001076},{"id":"https://openalex.org/C739882","wikidata":"https://www.wikidata.org/wiki/Q3560506","display_name":"Anomaly detection","level":2,"score":0.8058975},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7811821},{"id":"https://openalex.org/C199163554","wikidata":"https://www.wikidata.org/wiki/Q1681619","display_name":"Univariate","level":3,"score":0.60945946},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.5176921},{"id":"https://openalex.org/C176217482","wikidata":"https://www.wikidata.org/wiki/Q860554","display_name":"Metric (unit)","level":2,"score":0.48264104},{"id":"https://openalex.org/C12997251","wikidata":"https://www.wikidata.org/wiki/Q567560","display_name":"Anomaly (physics)","level":2,"score":0.423849},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.32133064},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.2726316},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.24460134},{"id":"https://openalex.org/C161584116","wikidata":"https://www.wikidata.org/wiki/Q1952580","display_name":"Multivariate statistics","level":2,"score":0.10115343},{"id":"https://openalex.org/C21547014","wikidata":"https://www.wikidata.org/wiki/Q1423657","display_name":"Operations management","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C26873012","wikidata":"https://www.wikidata.org/wiki/Q214781","display_name":"Condensed matter physics","level":1,"score":0.0}],"mesh":[],"locations_count":4,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2210.08847","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2210.08847","pdf_url":"http://arxiv.org/pdf/2210.08847","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://zaguan.unizar.es/record/125911","pdf_url":"https://zaguan.unizar.es/record/125911/files/texto_completo.pdf","source":{"id":"https://openalex.org/S4306402461","display_name":"Zaguan (Universidad de Zaragoza)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2210.08847","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2210.08847","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4377864969","https://openalex.org/W4300558037","https://openalex.org/W4290647774","https://openalex.org/W3210364259","https://openalex.org/W3207797160","https://openalex.org/W3189286258","https://openalex.org/W2972971679","https://openalex.org/W2912112202","https://openalex.org/W2806741695","https://openalex.org/W2667207928"],"abstract_inverted_index":{"This":[0],"paper":[1,159],"presents":[2],"a":[3,20,27,44,48,53,100],"new":[4,92],"Python":[5],"library":[6,18,64,76,98,117],"for":[7,16,59,162],"anomaly":[8,61,107,135],"detection":[9,136],"in":[10],"unsupervised":[11],"learning":[12],"approaches.":[13],"The":[14],"input":[15],"the":[17,40,60,63,70,75,97,106,111,119,144,148,151,154,158,164,167],"is":[19,118],"univariate":[21],"time":[22,37],"series":[23],"representing":[24],"observations":[25,41],"of":[26,47,113,147,153,166],"given":[28,45,68],"phenomenon.":[29],"Then,":[30],"it":[31,83],"can":[32,129],"identify":[33],"anomalous":[34],"epochs,":[35],"i.e.,":[36],"intervals":[38],"where":[39],"are":[42],"above":[43],"percentile":[46],"baseline":[49],"distribution,":[50],"defined":[51],"by":[52,69],"dissimilarity":[54,80],"metric.":[55],"Using":[56],"time-evolving":[57],"graphs":[58],"detection,":[62],"leverages":[65],"valuable":[66],"information":[67],"inter-dependencies":[71],"among":[72],"data.":[73],"Currently,":[74],"implements":[77],"28":[78],"different":[79],"metrics,":[81],"and":[82,150,173],"has":[84],"been":[85],"designed":[86],"to":[87,103,110,169],"be":[88,130],"easily":[89],"extended":[90,131],"with":[91,132],"ones.":[93],"Through":[94],"an":[95],"API,":[96],"exposes":[99],"complete":[101],"functionality":[102],"carry":[104],"out":[105],"detection.":[108],"Summarizing,":[109],"best":[112],"our":[114],"knowledge,":[115],"this":[116],"only":[120],"one":[121],"publicly":[122],"available,":[123],"that":[124],"based":[125],"on":[126],"dynamic":[127],"graphs,":[128],"other":[133],"state-of-the-art":[134],"techniques.":[137,156],"Our":[138],"experimentation":[139],"shows":[140],"promising":[141],"results":[142],"regarding":[143],"execution":[145],"times":[146],"algorithms":[149],"accuracy":[152],"implemented":[155],"Additionally,":[157],"provides":[160],"guidelines":[161],"setting":[163],"parameters":[165],"detectors":[168],"improve":[170],"their":[171],"performance":[172],"prediction":[174],"accuracy.":[175]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4306802336","counts_by_year":[],"updated_date":"2025-01-22T03:50:13.719381","created_date":"2022-10-20"}