{"id":"https://openalex.org/W4306801498","doi":"https://doi.org/10.48550/arxiv.2210.08674","title":"Scaling up Trustless DNN Inference with Zero-Knowledge Proofs","display_name":"Scaling up Trustless DNN Inference with Zero-Knowledge Proofs","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4306801498","doi":"https://doi.org/10.48550/arxiv.2210.08674"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2210.08674","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2210.08674","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5072348548","display_name":"Daniel Kang","orcid":"https://orcid.org/0000-0001-9860-9938"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kang, Daniel","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5015518638","display_name":"Tatsunori Hashimoto","orcid":"https://orcid.org/0000-0003-0521-5855"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hashimoto, Tatsunori","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5041920173","display_name":"Ion Stoica","orcid":"https://orcid.org/0000-0002-5373-0088"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Stoica, Ion","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5100411571","display_name":"Yi Sun","orcid":"https://orcid.org/0000-0002-7636-0200"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Sun, Yi","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":7,"citation_normalized_percentile":{"value":0.88177,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":86,"max":87},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11775","display_name":"COVID-19 diagnosis using AI","score":0.9915,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T11775","display_name":"COVID-19 diagnosis using AI","score":0.9915,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10522","display_name":"Medical Imaging Techniques and Applications","score":0.9913,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.99,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/zero-knowledge-proof","display_name":"Zero-knowledge proof","score":0.81179565},{"id":"https://openalex.org/keywords/leverage","display_name":"Leverage (statistics)","score":0.74871886},{"id":"https://openalex.org/keywords/argument","display_name":"Argument (complex analysis)","score":0.48083007}],"concepts":[{"id":"https://openalex.org/C176329583","wikidata":"https://www.wikidata.org/wiki/Q191943","display_name":"Zero-knowledge proof","level":3,"score":0.81179565},{"id":"https://openalex.org/C108710211","wikidata":"https://www.wikidata.org/wiki/Q11538","display_name":"Mathematical proof","level":2,"score":0.7852459},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.77405274},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.75299245},{"id":"https://openalex.org/C153083717","wikidata":"https://www.wikidata.org/wiki/Q6535263","display_name":"Leverage (statistics)","level":2,"score":0.74871886},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.48169693},{"id":"https://openalex.org/C98184364","wikidata":"https://www.wikidata.org/wiki/Q1780131","display_name":"Argument (complex analysis)","level":2,"score":0.48083007},{"id":"https://openalex.org/C99844830","wikidata":"https://www.wikidata.org/wiki/Q102441924","display_name":"Scaling","level":2,"score":0.46087247},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.4113466},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.36465317},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.33820903},{"id":"https://openalex.org/C178489894","wikidata":"https://www.wikidata.org/wiki/Q8789","display_name":"Cryptography","level":2,"score":0.27711198},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.17846695},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2210.08674","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2210.08674","pdf_url":"http://arxiv.org/pdf/2210.08674","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2210.08674","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2210.08674","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.41,"id":"https://metadata.un.org/sdg/17","display_name":"Partnerships for the goals"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4394650907","https://openalex.org/W4379251913","https://openalex.org/W4254119641","https://openalex.org/W3196207352","https://openalex.org/W2951724202","https://openalex.org/W2163538620","https://openalex.org/W2022025391","https://openalex.org/W1970588133","https://openalex.org/W1870614684","https://openalex.org/W1567449721"],"abstract_inverted_index":{"As":[0,35],"ML":[1,17,28,75,111,153,172,189],"models":[2,29,173],"have":[3,183],"increased":[4],"in":[5,30,53,93,156],"capabilities":[6],"and":[7,115,170],"accuracy,":[8,169],"so":[9],"has":[10,83],"the":[11,27,31,48,54,68,81,126,184],"complexity":[12],"of":[13,56,99,103,130,159],"their":[14],"deployments.":[15],"Increasingly,":[16],"model":[18,44,76,112,154,168,190],"consumers":[19,45],"are":[20],"turning":[21],"to":[22,25,73,109,148,151,186],"service":[23,61],"providers":[24],"serve":[26],"ML-as-a-service":[32],"(MLaaS)":[33],"paradigm.":[34],"MLaaS":[36,164,167],"proliferates,":[37],"a":[38,101,134,157],"critical":[39],"requirement":[40],"emerges:":[41],"how":[42],"can":[43],"verify":[46,74,110,152],"that":[47,181],"correct":[49],"predictions":[50],"were":[51],"served,":[52],"face":[55],"malicious,":[57],"lazy,":[58],"or":[59],"buggy":[60],"providers?":[62],"In":[63,122],"this":[64],"work,":[65],"we":[66,89,124],"present":[67],"first":[69,127],"practical":[70],"ImageNet-scale":[71],"method":[72],"inference":[77,82,132,191],"non-interactively,":[78],"i.e.,":[79],"after":[80],"been":[84],"done.":[85],"To":[86],"do":[87],"so,":[88],"leverage":[90],"recent":[91],"developments":[92],"ZK-SNARKs":[94,106,147,182],"(zero-knowledge":[95],"succinct":[96],"non-interactive":[97],"argument":[98],"knowledge),":[100],"form":[102],"zero-knowledge":[104],"proofs.":[105],"allows":[107],"us":[108],"execution":[113,155],"non-interactively":[114],"with":[116],"only":[117],"standard":[118],"cryptographic":[119],"hardness":[120],"assumptions.":[121],"particular,":[123],"provide":[125],"ZK-SNARK":[128],"proof":[129],"valid":[131],"for":[133,162,174],"full":[135],"resolution":[136],"ImageNet":[137],"model,":[138],"achieving":[139],"79\\%":[140],"top-5":[141],"accuracy.":[142],"We":[143],"further":[144],"use":[145],"these":[146],"design":[149],"protocols":[150],"variety":[158],"scenarios,":[160],"including":[161],"verifying":[163,166],"predictions,":[165],"using":[171],"trustless":[175],"retrieval.":[176],"Together,":[177],"our":[178],"results":[179],"show":[180],"promise":[185],"make":[187],"verified":[188],"practical.":[192]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4306801498","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2024,"cited_by_count":6}],"updated_date":"2025-04-24T02:20:40.883287","created_date":"2022-10-20"}