{"id":"https://openalex.org/W4306705937","doi":"https://doi.org/10.48550/arxiv.2210.07692","title":"Accelerating RNN-based Speech Enhancement on a Multi-Core MCU with Mixed FP16-INT8 Post-Training Quantization","display_name":"Accelerating RNN-based Speech Enhancement on a Multi-Core MCU with Mixed FP16-INT8 Post-Training Quantization","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4306705937","doi":"https://doi.org/10.48550/arxiv.2210.07692"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2210.07692","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2210.07692","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5030025275","display_name":"Manuele Rusci","orcid":"https://orcid.org/0000-0001-7458-4019"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Rusci, Manuele","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5035367442","display_name":"Marco Fariselli","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Fariselli, Marco","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5002672064","display_name":"Martin Croome","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Croome, Martin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5105412390","display_name":"Francesco Paci","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Paci, Francesco","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5055271504","display_name":"\u00c9ric Flamand","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Flamand, Eric","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":59},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10860","display_name":"Speech and Audio Processing","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10860","display_name":"Speech and Audio Processing","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10283","display_name":"Hearing Loss and Rehabilitation","score":0.9807,"subfield":{"id":"https://openalex.org/subfields/2805","display_name":"Cognitive Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T10326","display_name":"Indoor and Outdoor Localization Technologies","score":0.9622,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.79808503},{"id":"https://openalex.org/C28855332","wikidata":"https://www.wikidata.org/wiki/Q198099","display_name":"Quantization (signal processing)","level":2,"score":0.6974936},{"id":"https://openalex.org/C173018170","wikidata":"https://www.wikidata.org/wiki/Q165678","display_name":"Microcontroller","level":2,"score":0.6001206},{"id":"https://openalex.org/C43521106","wikidata":"https://www.wikidata.org/wiki/Q2165493","display_name":"Pipeline (software)","level":2,"score":0.5489942},{"id":"https://openalex.org/C81081738","wikidata":"https://www.wikidata.org/wiki/Q55542","display_name":"Lossless compression","level":3,"score":0.46245694},{"id":"https://openalex.org/C45374587","wikidata":"https://www.wikidata.org/wiki/Q12525525","display_name":"Computation","level":2,"score":0.4105361},{"id":"https://openalex.org/C173608175","wikidata":"https://www.wikidata.org/wiki/Q232661","display_name":"Parallel computing","level":1,"score":0.39642182},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.3838797},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.37935302},{"id":"https://openalex.org/C9390403","wikidata":"https://www.wikidata.org/wiki/Q3966","display_name":"Computer hardware","level":1,"score":0.37489864},{"id":"https://openalex.org/C113775141","wikidata":"https://www.wikidata.org/wiki/Q428691","display_name":"Computer engineering","level":1,"score":0.3578491},{"id":"https://openalex.org/C78548338","wikidata":"https://www.wikidata.org/wiki/Q2493","display_name":"Data compression","level":2,"score":0.27844185},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2210.07692","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2210.07692","pdf_url":"http://arxiv.org/pdf/2210.07692","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2210.07692","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2210.07692","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Affordable and clean energy","id":"https://metadata.un.org/sdg/7","score":0.89}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4316095964","https://openalex.org/W3214410901","https://openalex.org/W3204400881","https://openalex.org/W3204296682","https://openalex.org/W3183118997","https://openalex.org/W3106969033","https://openalex.org/W2917767146","https://openalex.org/W2771395446","https://openalex.org/W2386082753","https://openalex.org/W2383001583"],"abstract_inverted_index":{"This":[0],"paper":[1],"presents":[2],"an":[3,37],"optimized":[4,38],"methodology":[5],"to":[6,75,94,105,125,129,139,143,168,181,213,222],"design":[7,231],"and":[8,55,113,204,251],"deploy":[9],"Speech":[10],"Enhancement":[11],"(SE)":[12],"algorithms":[13],"based":[14,115],"on":[15,20,110,119,161,198,242],"Recurrent":[16],"Neural":[17],"Networks":[18],"(RNNs)":[19],"a":[21,81,150,169,176,207],"state-of-the-art":[22,238],"MicroController":[23],"Unit":[24],"(MCU),":[25],"with":[26,61,73,141],"1+8":[27],"general-purpose":[28],"RISC-V":[29],"cores.":[30],"To":[31,68],"achieve":[32],"low-latency":[33],"execution,":[34],"we":[35,79,133,184,205],"propose":[36,80],"software":[39],"pipeline":[40],"interleaving":[41],"parallel":[42],"computation":[43,136],"of":[44,65,100,171,189,211,248],"LSTM":[45,112],"or":[46],"GRU":[47,114],"recurrent":[48,92],"blocks,":[49],"featuring":[50,123],"vectorized":[51],"8-bit":[52,95,152],"integer":[53],"(INT8)":[54],"16-bit":[56],"floating-point":[57],"(FP16)":[58],"compute":[59],"units,":[60],"manually-managed":[62],"memory":[63,178,192,203],"transfers":[64],"model":[66],"parameters.":[67,127],"ensure":[69],"minimal":[70],"accuracy":[71],"degradation":[72],"respect":[74,142],"the":[76,91,97,120,130,135,144,156,163,186,190,195,199,217,227],"full-precision":[77],"models,":[78],"novel":[82],"FP16-INT8":[83],"Mixed-Precision":[84,164],"Post-Training":[85],"Quantization":[86],"(PTQ)":[87],"scheme":[88,166],"that":[89,154,245],"compresses":[90],"layers":[93,102],"while":[96,174,224],"bit":[98],"precision":[99],"remaining":[101],"is":[103],"kept":[104],"FP16.":[106],"Experiments":[107],"are":[108],"conducted":[109],"multiple":[111],"SE":[116,239],"models":[117,197,250],"trained":[118],"Valentini":[121],"dataset,":[122],"up":[124,138,212],"1.24M":[126],"Thanks":[128,180],"proposed":[131],"approaches,":[132],"speed-up":[134],"by":[137,159,193,215],"4x":[140],"lossless":[145],"FP16":[146],"baselines.":[147],"Differently":[148],"from":[149,220],"uniform":[151],"quantization":[153],"degrades":[155],"PESQ":[157],"score":[158],"0.3":[160],"average,":[162],"PTQ":[165],"leads":[167],"low-degradation":[170],"only":[172],"0.06,":[173],"achieving":[175],"1.4-1.7x":[177],"saving.":[179],"this":[182],"compression,":[183],"cut":[185],"power":[187,209],"cost":[188],"external":[191],"fitting":[194],"large":[196],"limited":[200],"on-chip":[201],"non-volatile":[202],"gain":[206],"MCU":[208],"saving":[210],"2.5x":[214],"reducing":[216],"supply":[218],"voltage":[219],"0.8V":[221],"0.65V":[223],"still":[225],"matching":[226],"real-time":[228],"constraints.":[229],"Our":[230],"results":[232],"10x":[233],"more":[234],"energy":[235],"efficient":[236],"than":[237],"solutions":[240],"deployed":[241],"single-core":[243],"MCUs":[244],"make":[246],"use":[247],"smaller":[249],"quantization-aware":[252],"training.":[253]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4306705937","counts_by_year":[],"updated_date":"2025-02-25T09:06:52.876900","created_date":"2022-10-19"}