{"id":"https://openalex.org/W4304192692","doi":"https://doi.org/10.48550/arxiv.2210.03329","title":"Calibrating Factual Knowledge in Pretrained Language Models","display_name":"Calibrating Factual Knowledge in Pretrained Language Models","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4304192692","doi":"https://doi.org/10.48550/arxiv.2210.03329"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2210.03329","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2210.03329","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5113750837","display_name":"Qingxiu Dong","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Dong, Qingxiu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5020456783","display_name":"Damai Dai","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Dai, Damai","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5065232236","display_name":"Yifan Song","orcid":"https://orcid.org/0009-0004-6205-2655"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Song, Yifan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100735418","display_name":"Jingjing Xu","orcid":"https://orcid.org/0000-0003-1082-2262"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xu, Jingjing","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5110285832","display_name":"Zhifang Sui","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Sui, Zhifang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5100440407","display_name":"Lei Li","orcid":"https://orcid.org/0000-0003-3095-9776"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Lei","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":3,"citation_normalized_percentile":{"value":0.640014,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":76,"max":80},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":0.9868,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/scratch","display_name":"Scratch","score":0.5814609}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8129438},{"id":"https://openalex.org/C177148314","wikidata":"https://www.wikidata.org/wiki/Q170084","display_name":"Generalization","level":2,"score":0.7614969},{"id":"https://openalex.org/C165838908","wikidata":"https://www.wikidata.org/wiki/Q736777","display_name":"Calibration","level":2,"score":0.71275556},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.6925679},{"id":"https://openalex.org/C44291984","wikidata":"https://www.wikidata.org/wiki/Q1074173","display_name":"Question answering","level":2,"score":0.58726436},{"id":"https://openalex.org/C2781235140","wikidata":"https://www.wikidata.org/wiki/Q275131","display_name":"Scratch","level":2,"score":0.5814609},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5618713},{"id":"https://openalex.org/C2780586882","wikidata":"https://www.wikidata.org/wiki/Q7520643","display_name":"Simple (philosophy)","level":2,"score":0.5054481},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.49017578},{"id":"https://openalex.org/C137293760","wikidata":"https://www.wikidata.org/wiki/Q3621696","display_name":"Language model","level":2,"score":0.48117575},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.47603965},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.08393136},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.06251535},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C111472728","wikidata":"https://www.wikidata.org/wiki/Q9471","display_name":"Epistemology","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2210.03329","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2210.03329","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2210.03329","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Quality education","score":0.72,"id":"https://metadata.un.org/sdg/4"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4388937922","https://openalex.org/W3204607391","https://openalex.org/W3113264705","https://openalex.org/W2964413124","https://openalex.org/W2770018148","https://openalex.org/W2475116013","https://openalex.org/W2385135707","https://openalex.org/W2358308169","https://openalex.org/W2140315382","https://openalex.org/W2059109728"],"abstract_inverted_index":{"Previous":[0],"literature":[1],"has":[2],"proved":[3],"that":[4,16,121],"Pretrained":[5],"Language":[6],"Models":[7],"(PLMs)":[8],"can":[9,69],"store":[10],"factual":[11,38,99],"knowledge.":[12],"However,":[13],"we":[14,36,49,64,85,119,135],"find":[15,120],"facts":[17,73],"stored":[18],"in":[19,40],"the":[20,71,103,108,122,132,140],"PLMs":[21,41,68],"are":[22],"not":[23],"always":[24],"correct.":[25],"It":[26],"motivates":[27],"us":[28],"to":[29,57,91,97],"explore":[30],"a":[31,51,75,88],"fundamental":[32],"question:":[33],"How":[34],"do":[35],"calibrate":[37],"knowledge":[39,104,126,141],"without":[42],"re-training":[43],"from":[44],"scratch?":[45],"In":[46,113],"this":[47,59],"work,":[48],"propose":[50],"simple":[52],"and":[53,80,93,111,138],"lightweight":[54,89],"method":[55,90],"CaliNet":[56],"achieve":[58],"goal.":[60],"To":[61],"be":[62],"specific,":[63],"first":[65],"detect":[66],"whether":[67],"learn":[70],"right":[72,79],"via":[74],"contrastive":[76],"score":[77],"between":[78],"fake":[81],"facts.":[82],"If":[83],"not,":[84],"then":[86],"use":[87],"add":[92],"adapt":[94],"new":[95],"parameters":[96],"specific":[98],"texts.":[100],"Experiments":[101],"on":[102],"probing":[105],"task":[106],"show":[107],"calibration":[109,133,142],"effectiveness":[110],"efficiency.":[112],"addition,":[114],"through":[115],"closed-book":[116],"question":[117],"answering,":[118],"calibrated":[123],"PLM":[124],"possesses":[125],"generalization":[127],"ability":[128],"after":[129],"fine-tuning.":[130],"Beyond":[131],"performance,":[134],"further":[136],"investigate":[137],"visualize":[139],"mechanism.":[143]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4304192692","counts_by_year":[{"year":2023,"cited_by_count":3}],"updated_date":"2024-12-15T20:55:28.940367","created_date":"2022-10-11"}