{"id":"https://openalex.org/W4304192642","doi":"https://doi.org/10.48550/arxiv.2210.03265","title":"Polyhistor: Parameter-Efficient Multi-Task Adaptation for Dense Vision Tasks","display_name":"Polyhistor: Parameter-Efficient Multi-Task Adaptation for Dense Vision Tasks","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4304192642","doi":"https://doi.org/10.48550/arxiv.2210.03265"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2210.03265","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2210.03265","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5079738111","display_name":"Yen\u2010Cheng Liu","orcid":"https://orcid.org/0000-0002-7000-3245"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Liu, Yen-Cheng","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5057482975","display_name":"Chih\u2010Yao Ma","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ma, Chih-Yao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101061351","display_name":"Junjiao Tian","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Tian, Junjiao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5108752809","display_name":"Zijian He","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"He, Zijian","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5088892134","display_name":"Zsolt Kira","orcid":"https://orcid.org/0000-0002-2626-2004"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kira, Zsolt","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":15,"citation_normalized_percentile":{"value":0.854089,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":94,"max":95},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":0.9954,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":0.9954,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9951,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9929,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.59470344},{"id":"https://openalex.org/keywords/fine-tuning","display_name":"Fine-tuning","score":0.53169835}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8220905},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6313688},{"id":"https://openalex.org/C66322947","wikidata":"https://www.wikidata.org/wiki/Q11658","display_name":"Transformer","level":3,"score":0.6234792},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.59470344},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.56853884},{"id":"https://openalex.org/C157524613","wikidata":"https://www.wikidata.org/wiki/Q2828883","display_name":"Fine-tuning","level":2,"score":0.53169835},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.5270001},{"id":"https://openalex.org/C139807058","wikidata":"https://www.wikidata.org/wiki/Q352374","display_name":"Adaptation (eye)","level":2,"score":0.52663803},{"id":"https://openalex.org/C165801399","wikidata":"https://www.wikidata.org/wiki/Q25428","display_name":"Voltage","level":2,"score":0.093304336},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2210.03265","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2210.03265","pdf_url":"http://arxiv.org/pdf/2210.03265","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2210.03265","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2210.03265","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4385567133","https://openalex.org/W4372266902","https://openalex.org/W4360603156","https://openalex.org/W4321353415","https://openalex.org/W4319049505","https://openalex.org/W4287812764","https://openalex.org/W4287207696","https://openalex.org/W3208244077","https://openalex.org/W2745001401","https://openalex.org/W2378211422"],"abstract_inverted_index":{"Adapting":[0],"large-scale":[1],"pretrained":[2,26],"models":[3,78],"to":[4,28,55,121,147,160,179],"various":[5],"downstream":[6],"tasks":[7,30,49,58,81,111,152],"via":[8],"fine-tuning":[9,19,74,98],"is":[10,82],"a":[11,25,34,154],"standard":[12],"method":[13],"in":[14,23,45,70],"machine":[15],"learning.":[16],"Recently,":[17],"parameter-efficient":[18,92,97,166],"methods":[20,42,100,115,167,192],"show":[21,193],"promise":[22],"adapting":[24],"model":[27],"different":[29,80,108,151],"while":[31,168,182],"training":[32],"only":[33,183],"few":[35,155],"parameters.":[36,157,172,189],"Despite":[37],"their":[38,187],"success,":[39],"most":[40],"existing":[41,96,114,165],"are":[43,204],"proposed":[44],"Natural":[46],"Language":[47],"Processing":[48],"with":[50,59,153],"language":[51],"Transformers,":[52],"and":[53,75,94,137,143,200],"adaptation":[54],"Computer":[56],"Vision":[57,60,128],"Transformers":[61],"remains":[62],"under-explored,":[63],"especially":[64],"for":[65,79,101],"dense":[66,109],"vision":[67,102,110],"tasks.":[68,103],"Further,":[69],"multi-task":[71,91],"settings,":[72],"individually":[73],"storing":[76],"separate":[77],"inefficient.":[83],"In":[84],"this":[85,132],"work,":[86],"we":[87,134],"provide":[88],"an":[89],"extensive":[90],"benchmark":[93],"examine":[95],"NLP":[99],"Our":[104],"results":[105],"on":[106],"four":[107],"showed":[112],"that":[113],"cannot":[116],"be":[117],"efficiently":[118],"integrated":[119],"due":[120],"the":[122,126,180],"hierarchical":[123],"nature":[124],"of":[125,140,186],"Hierarchical":[127],"Transformers.":[129],"To":[130],"overcome":[131],"issue,":[133],"propose":[135],"Polyhistor":[136,174],"Polyhistor-Lite,":[138],"consisting":[139],"Decomposed":[141],"HyperNetworks":[142],"Layer-wise":[144],"Scaling":[145],"Kernels,":[146],"share":[148],"information":[149],"across":[150],"trainable":[156,171,188],"This":[158],"leads":[159],"favorable":[161],"performance":[162,195],"improvements":[163],"against":[164],"using":[169,184],"fewer":[170],"Specifically,":[173],"achieves":[175],"competitive":[176],"accuracy":[177],"compared":[178],"state-of-the-art":[181],"~10%":[185],"Furthermore,":[190],"our":[191],"larger":[194],"gains":[196],"when":[197],"large":[198],"networks":[199],"more":[201],"pretraining":[202],"data":[203],"used.":[205]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4304192642","counts_by_year":[{"year":2024,"cited_by_count":11},{"year":2023,"cited_by_count":4}],"updated_date":"2025-01-03T11:34:55.327560","created_date":"2022-10-11"}