{"id":"https://openalex.org/W4320085644","doi":"https://doi.org/10.48550/arxiv.2210.03189","title":"FocalUNETR: A Focal Transformer for Boundary-aware Segmentation of CT Images","display_name":"FocalUNETR: A Focal Transformer for Boundary-aware Segmentation of CT Images","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4320085644","doi":"https://doi.org/10.48550/arxiv.2210.03189"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2210.03189","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2210.03189","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5014432190","display_name":"Chengyin Li","orcid":"https://orcid.org/0000-0003-2450-9760"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Chengyin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5034476391","display_name":"Hassan Bagher-Ebadian","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Bagher-Ebadian, Hassan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5039502607","display_name":"Vikram Goddla","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Goddla, Vikram","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5075401316","display_name":"Indrin J. Chetty","orcid":"https://orcid.org/0000-0002-7979-7053"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chetty, Indrin J.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5009256505","display_name":"Dongxiao Zhu","orcid":"https://orcid.org/0000-0002-0225-7817"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhu, Dongxiao","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10052","display_name":"Medical Image Segmentation Techniques","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10052","display_name":"Medical Image Segmentation Techniques","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9982,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.994,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/hausdorff-distance","display_name":"Hausdorff distance","score":0.6129789},{"id":"https://openalex.org/keywords/ground-truth","display_name":"Ground truth","score":0.5384332},{"id":"https://openalex.org/keywords/s\u00f8rensen\u2013dice-coefficient","display_name":"S\u00f8rensen\u2013Dice coefficient","score":0.4312768}],"concepts":[{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.7390965},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6997179},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.65587217},{"id":"https://openalex.org/C141898687","wikidata":"https://www.wikidata.org/wiki/Q1501997","display_name":"Hausdorff distance","level":2,"score":0.6129789},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.5549684},{"id":"https://openalex.org/C146849305","wikidata":"https://www.wikidata.org/wiki/Q370766","display_name":"Ground truth","level":2,"score":0.5384332},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.45786408},{"id":"https://openalex.org/C163892561","wikidata":"https://www.wikidata.org/wiki/Q2613728","display_name":"S\u00f8rensen\u2013Dice coefficient","level":4,"score":0.4312768},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4020624}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2210.03189","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2210.03189","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2210.03189","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/1","score":0.64,"display_name":"No poverty"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4389009345","https://openalex.org/W4363650189","https://openalex.org/W4287691568","https://openalex.org/W3197954266","https://openalex.org/W3197673523","https://openalex.org/W3188463548","https://openalex.org/W3127600691","https://openalex.org/W3047746737","https://openalex.org/W1997160662","https://openalex.org/W1121315442"],"abstract_inverted_index":{"Computed":[0],"Tomography":[1],"(CT)":[2],"based":[3],"precise":[4],"prostate":[5,20,79,103],"segmentation":[6,50,80,104],"for":[7],"treatment":[8],"planning":[9],"is":[10,138],"challenging":[11],"due":[12],"to":[13,52,82],"(1)":[14],"the":[15,19,30,77,84,98,101],"unclear":[16,85],"boundary":[17,86],"of":[18,32,100],"derived":[21],"from":[22,63],"CT's":[23],"poor":[24],"soft":[25],"tissue":[26],"contrast":[27],"and":[28,54,60,123,131],"(2)":[29],"limitation":[31],"convolutional":[33],"neural":[34],"network-based":[35],"models":[36],"in":[37,88,111],"capturing":[38],"long-range":[39],"global":[40,61],"context.":[41],"Here":[42],"we":[43,67],"propose":[44],"a":[45],"novel":[46],"focal":[47],"transformer-based":[48],"image":[49,134],"architecture":[51],"effectively":[53],"efficiently":[55],"extract":[56],"local":[57],"visual":[58],"features":[59],"context":[62],"CT":[64,89,133],"images.":[65,90],"Additionally,":[66],"design":[68,95],"an":[69],"auxiliary":[70],"boundary-induced":[71],"label":[72],"regression":[73],"task":[74,81,105],"coupled":[75],"with":[76],"main":[78],"address":[83],"issue":[87],"We":[91],"demonstrate":[92],"that":[93],"this":[94,141],"significantly":[96],"improves":[97],"quality":[99],"CT-based":[102],"over":[106],"other":[107],"competing":[108],"methods,":[109],"resulting":[110],"substantially":[112],"improved":[113],"performance,":[114],"i.e.,":[115],"higher":[116],"Dice":[117],"Similarity":[118],"Coefficient,":[119],"lower":[120],"Hausdorff":[121],"Distance,":[122,127],"Average":[124],"Symmetric":[125],"Surface":[126],"on":[128],"both":[129],"private":[130],"public":[132],"datasets.":[135],"Our":[136],"code":[137],"available":[139],"at":[140],"\\href{https://github.com/ChengyinLee/FocalUNETR.git}{link}.":[142]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4320085644","counts_by_year":[],"updated_date":"2024-12-15T19:13:34.331464","created_date":"2023-02-12"}