{"id":"https://openalex.org/W4303649073","doi":"https://doi.org/10.48550/arxiv.2210.02943","title":"On Explaining Confounding Bias","display_name":"On Explaining Confounding Bias","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4303649073","doi":"https://doi.org/10.48550/arxiv.2210.02943"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2210.02943","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"public-domain","license_id":"https://openalex.org/licenses/public-domain","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2210.02943","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5026215174","display_name":"Brit Youngmann","orcid":"https://orcid.org/0000-0002-0031-5550"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Youngmann, Brit","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5039133265","display_name":"Michael Cafarella","orcid":"https://orcid.org/0000-0001-6122-0590"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Cafarella, Michael","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5005553562","display_name":"Yuval Moskovitch","orcid":"https://orcid.org/0000-0002-0325-7392"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Moskovitch, Yuval","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5103209063","display_name":"Babak Salimi","orcid":"https://orcid.org/0000-0003-2485-9533"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Salimi, Babak","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.674307,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":69,"max":75},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11106","display_name":"Data Management and Algorithms","score":0.9848,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11106","display_name":"Data Management and Algorithms","score":0.9848,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12761","display_name":"Data Stream Mining Techniques","score":0.982,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.9813,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.6779635}],"concepts":[{"id":"https://openalex.org/C77350462","wikidata":"https://www.wikidata.org/wiki/Q1125472","display_name":"Confounding","level":2,"score":0.7680689},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7079618},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.6779635},{"id":"https://openalex.org/C118930307","wikidata":"https://www.wikidata.org/wiki/Q600590","display_name":"Tuple","level":2,"score":0.64319843},{"id":"https://openalex.org/C117220453","wikidata":"https://www.wikidata.org/wiki/Q5172842","display_name":"Correlation","level":2,"score":0.5330267},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.52713275},{"id":"https://openalex.org/C4679612","wikidata":"https://www.wikidata.org/wiki/Q866298","display_name":"Aggregate (composite)","level":2,"score":0.48750445},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.42998374},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.32100856},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.21503109},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.16408446},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.0},{"id":"https://openalex.org/C118615104","wikidata":"https://www.wikidata.org/wiki/Q121416","display_name":"Discrete mathematics","level":1,"score":0.0},{"id":"https://openalex.org/C159985019","wikidata":"https://www.wikidata.org/wiki/Q181790","display_name":"Composite material","level":1,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2210.02943","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"public-domain","license_id":"https://openalex.org/licenses/public-domain","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2210.02943","pdf_url":"http://arxiv.org/pdf/2210.02943","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2210.02943","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2210.02943","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"public-domain","license_id":"https://openalex.org/licenses/public-domain","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4245395944","https://openalex.org/W2994176440","https://openalex.org/W2562731034","https://openalex.org/W2154338319","https://openalex.org/W2143551613","https://openalex.org/W2143345456","https://openalex.org/W2138823233","https://openalex.org/W2136814519","https://openalex.org/W1979740464","https://openalex.org/W1789991335"],"abstract_inverted_index":{"When":[0],"analyzing":[1],"large":[2],"datasets,":[3],"analysts":[4],"are":[5,92],"often":[6],"interested":[7],"in":[8,32,58,72,86,96,129,160],"the":[9,33,40,68,90,97,107,117,122,161,167,176],"explanations":[10,57,91,158],"for":[11,157],"surprising":[12],"or":[13],"unexpected":[14,53,69,123],"results":[15],"produced":[16],"by":[17],"their":[18],"queries.":[19],"In":[20],"this":[21],"work,":[22],"we":[23],"focus":[24],"on":[25],"aggregate":[26],"SQL":[27],"queries":[28,44],"that":[29,38,66,105,120,146,155],"expose":[30],"correlations":[31],"data.":[34,99,163],"A":[35],"major":[36],"challenge":[37],"hinders":[39],"interpretation":[41],"of":[42,60,63,110,169,178,186,193],"such":[43],"is":[45,127],"confounding":[46,64,80,195],"bias,":[47],"which":[48],"can":[49],"lead":[50],"to":[51,77,172,180],"an":[52,102,189],"correlation.":[54,124],"We":[55,75,100,134,164],"generate":[56],"terms":[59],"a":[61,73,130,143],"set":[62],"variables":[65,81],"explain":[67,121],"correlation":[70],"observed":[71],"query.":[74],"propose":[76],"mine":[78],"candidate":[79,194],"from":[82,113],"external":[83,114],"sources":[84,115],"since,":[85],"many":[87],"real-life":[88,139],"scenarios,":[89],"not":[93],"solely":[94],"contained":[95],"input":[98,118,162,182],"present":[101],"efficient":[103],"algorithm":[104,126],"finds":[106],"optimal":[108],"subset":[109],"attributes":[111],"(mined":[112],"and":[116,141,175,188],"dataset)":[119],"This":[125],"embodied":[128],"system":[131,171],"called":[132],"MESA.":[133],"demonstrate":[135,166],"experimentally":[136],"over":[137],"multiple":[138],"datasets":[140,183],"through":[142],"user":[144],"study":[145],"our":[147,170],"approach":[148],"generates":[149],"insightful":[150],"explanations,":[151],"outperforming":[152],"existing":[153],"methods":[154],"search":[156,191],"only":[159],"further":[165],"robustness":[168],"missing":[173],"data":[174],"ability":[177],"MESA":[179],"handle":[181],"containing":[184],"millions":[185],"tuples":[187],"extensive":[190],"space":[192],"attributes.":[196]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4303649073","counts_by_year":[{"year":2024,"cited_by_count":2}],"updated_date":"2025-04-05T20:06:58.664310","created_date":"2022-10-08"}