{"id":"https://openalex.org/W4302012262","doi":"https://doi.org/10.48550/arxiv.2210.00802","title":"DDoS: A Graph Neural Network based Drug Synergy Prediction Algorithm","display_name":"DDoS: A Graph Neural Network based Drug Synergy Prediction Algorithm","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4302012262","doi":"https://doi.org/10.48550/arxiv.2210.00802"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2210.00802","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2210.00802","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5061407760","display_name":"Kyriakos Schwarz","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Schwarz, Kyriakos","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5035834869","display_name":"Alicia Pliego\u2010Mendieta","orcid":"https://orcid.org/0000-0002-5723-5615"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Pliego-Mendieta, Alicia","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5052954870","display_name":"Lara Planas\u2010Paz","orcid":"https://orcid.org/0000-0001-9603-9257"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Planas-Paz, Lara","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5039120517","display_name":"Chantal Pauli","orcid":"https://orcid.org/0000-0001-9621-8511"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Pauli, Chantal","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101601736","display_name":"Ahmed Allam","orcid":"https://orcid.org/0000-0002-3648-9288"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Allam, Ahmed","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5025057284","display_name":"Michael Krauthammer","orcid":"https://orcid.org/0000-0002-4808-1845"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Krauthammer, Michael","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":59},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10211","display_name":"Computational Drug Discovery Methods","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10211","display_name":"Computational Drug Discovery Methods","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11178","display_name":"Receptor Mechanisms and Signaling","score":0.9717,"subfield":{"id":"https://openalex.org/subfields/1312","display_name":"Molecular Biology"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T10621","display_name":"Gene Regulatory Network Analysis","score":0.9579,"subfield":{"id":"https://openalex.org/subfields/1312","display_name":"Molecular Biology"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.7423181}],"concepts":[{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.7423181},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6877195},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.60510623},{"id":"https://openalex.org/C2780035454","wikidata":"https://www.wikidata.org/wiki/Q8386","display_name":"Drug","level":2,"score":0.57722706},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.54673415},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.546086},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.4961227},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.48796004},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.35982338},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.1789133},{"id":"https://openalex.org/C98274493","wikidata":"https://www.wikidata.org/wiki/Q128406","display_name":"Pharmacology","level":1,"score":0.09485689},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.07612848},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2210.00802","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2210.00802","pdf_url":"http://arxiv.org/pdf/2210.00802","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2210.00802","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2210.00802","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W972276598","https://openalex.org/W4321353415","https://openalex.org/W4246352526","https://openalex.org/W2745001401","https://openalex.org/W2378211422","https://openalex.org/W2130974462","https://openalex.org/W2121910908","https://openalex.org/W2087343574","https://openalex.org/W2086519370","https://openalex.org/W2028665553"],"abstract_inverted_index":{"Background:":[0],"Drug":[1],"synergy":[2,42,62,80,106,122,138,216],"occurs":[3],"when":[4,198],"the":[5,14,17,26,44,97],"combined":[6],"effect":[7,27],"of":[8,16,28,47,66,127,134,146,169,222],"two":[9],"drugs":[10,30,147],"is":[11,35,53,154],"greater":[12],"than":[13],"sum":[15],"individual":[18],"drugs'":[19],"effect.":[20],"While":[21],"cell":[22,88,149],"line":[23,89],"data":[24,39],"measuring":[25],"single":[29],"are":[31],"readily":[32],"available,":[33],"there":[34,52],"relatively":[36],"less":[37],"comparable":[38],"on":[40,142,156,171,200],"drug":[41,49,61,79,84,99,105,121,137,166,176,215],"given":[43],"vast":[45],"amount":[46],"possible":[48],"combinations.":[50],"Thus,":[51],"interest":[54],"to":[55,59,110,140,191,194],"use":[56,94],"computational":[57],"approaches":[58],"predict":[60],"for":[63,78,120],"untested":[64],"pairs":[65],"drugs.":[67,223],"Methods:":[68],"We":[69,93,205],"introduce":[70],"a":[71,125,132,143,208],"Graph":[72],"Neural":[73],"Network":[74],"(GNN)":[75],"based":[76,210],"model":[77,211],"prediction,":[81],"which":[82],"utilizes":[83,131],"chemical":[85,175],"structures":[86],"and":[87,148,173],"gene":[90],"expression":[91],"data.":[92],"information":[95],"from":[96,189],"largest":[98],"combination":[100,133],"database":[101],"available":[102],"(DrugComb),":[103],"combining":[104],"scores":[107,187],"in":[108],"order":[109],"construct":[111],"high":[112,158],"confidence":[113,159],"benchmark":[114,160,202],"datasets.":[115,161,203],"Results:":[116],"Our":[117],"proposed":[118],"solution":[119],"predictions":[123,217],"offers":[124],"number":[126],"benefits:":[128],"1)":[129],"It":[130,153,163,179],"34":[135],"distinct":[136],"datasets":[139],"learn":[141],"wide":[144],"variety":[145],"lines":[150],"representations.":[151],"2)":[152],"trained":[155],"constructed":[157],"3)":[162],"learns":[164],"task-specific":[165,220],"representations,":[167],"instead":[168],"relying":[170],"generalized":[172],"pre-computed":[174],"features.":[177],"4)":[178],"achieves":[180],"similar":[181],"or":[182],"better":[183],"prediction":[184],"performance":[185],"(AUPR":[186],"ranging":[188],"0.777":[190],"0.964)":[192],"compared":[193],"state-of-the-art":[195,214],"baseline":[196],"models":[197],"tested":[199],"various":[201],"Conclusions:":[204],"demonstrate":[206],"that":[207],"GNN":[209],"can":[212],"provide":[213],"by":[218],"learning":[219],"representations":[221]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4302012262","counts_by_year":[],"updated_date":"2025-03-01T16:35:50.556509","created_date":"2022-10-06"}