{"id":"https://openalex.org/W4300980431","doi":"https://doi.org/10.48550/arxiv.2209.15449","title":"End-to-End Label Uncertainty Modeling in Speech Emotion Recognition using Bayesian Neural Networks and Label Distribution Learning","display_name":"End-to-End Label Uncertainty Modeling in Speech Emotion Recognition using Bayesian Neural Networks and Label Distribution Learning","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4300980431","doi":"https://doi.org/10.48550/arxiv.2209.15449"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2209.15449","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-sa","license_id":"https://openalex.org/licenses/cc-by-sa","version":null,"is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"journal-article","indexed_in":["datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2209.15449","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5064507749","display_name":"Navin Raj Prabhu","orcid":"https://orcid.org/0000-0002-0263-3077"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Prabhu, Navin Raj","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5076338187","display_name":"Nale Lehmann\u2010Willenbrock","orcid":"https://orcid.org/0000-0003-3346-5894"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lehmann-Willenbrock, Nale","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5030633682","display_name":"Timo Gerkman","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Gerkman, Timo","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":59},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10667","display_name":"Emotion and Mood Recognition","score":0.9878,"subfield":{"id":"https://openalex.org/subfields/3205","display_name":"Experimental and Cognitive Psychology"},"field":{"id":"https://openalex.org/fields/32","display_name":"Psychology"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T10667","display_name":"Emotion and Mood Recognition","score":0.9878,"subfield":{"id":"https://openalex.org/subfields/3205","display_name":"Experimental and Cognitive Psychology"},"field":{"id":"https://openalex.org/fields/32","display_name":"Psychology"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10201","display_name":"Speech Recognition and Synthesis","score":0.9788,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10664","display_name":"Sentiment Analysis and Opinion Mining","score":0.9762,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/ground-truth","display_name":"Ground truth","score":0.5546259},{"id":"https://openalex.org/keywords/divergence","display_name":"Divergence (linguistics)","score":0.43446997},{"id":"https://openalex.org/keywords/kullback\u2013leibler-divergence","display_name":"Kullback\u2013Leibler divergence","score":0.42834783}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.73035896},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6072784},{"id":"https://openalex.org/C185429906","wikidata":"https://www.wikidata.org/wiki/Q1130160","display_name":"Estimator","level":2,"score":0.58177745},{"id":"https://openalex.org/C146849305","wikidata":"https://www.wikidata.org/wiki/Q370766","display_name":"Ground truth","level":2,"score":0.5546259},{"id":"https://openalex.org/C177769412","wikidata":"https://www.wikidata.org/wiki/Q278090","display_name":"Prior probability","level":3,"score":0.5463914},{"id":"https://openalex.org/C2776321320","wikidata":"https://www.wikidata.org/wiki/Q857525","display_name":"Annotation","level":2,"score":0.5364388},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5023618},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.4893269},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.4517991},{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.4466986},{"id":"https://openalex.org/C207390915","wikidata":"https://www.wikidata.org/wiki/Q1230525","display_name":"Divergence (linguistics)","level":2,"score":0.43446997},{"id":"https://openalex.org/C171752962","wikidata":"https://www.wikidata.org/wiki/Q255166","display_name":"Kullback\u2013Leibler divergence","level":2,"score":0.42834783},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.38841867},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.32479087},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.16157097},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.12343225},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2209.15449","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-sa","license_id":"https://openalex.org/licenses/cc-by-sa","version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2209.15449","pdf_url":"http://arxiv.org/pdf/2209.15449","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2209.15449","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2209.15449","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-sa","license_id":"https://openalex.org/licenses/cc-by-sa","version":null,"is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":["https://openalex.org/W4379619502"],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W3048739257","https://openalex.org/W2963604926","https://openalex.org/W2887774187","https://openalex.org/W2388220555","https://openalex.org/W2199957582","https://openalex.org/W2105321464","https://openalex.org/W2033178790","https://openalex.org/W1665563134","https://openalex.org/W1616881371","https://openalex.org/W1520875569"],"abstract_inverted_index":{"To":[0,32],"train":[1,127],"machine":[2],"learning":[3],"algorithms":[4],"to":[5,45,61,88,126],"predict":[6],"emotional":[7,25,66],"expressions":[8,26],"in":[9,65,165,173],"terms":[10],"of":[11,80,86,96,113,182,197],"arousal":[12],"and":[13,43,123,138,169,193],"valence,":[14],"annotated":[15],"datasets":[16],"are":[17,30,37],"needed.":[18],"However,":[19,49],"as":[20],"different":[21],"people":[22],"perceive":[23],"others'":[24],"differently,":[27],"their":[28],"annotations":[29,36,87,114,198],"subjective.":[31],"account":[33],"for":[34,110,130],"this,":[35],"typically":[38],"collected":[39],"from":[40,134],"multiple":[41],"annotators":[42],"averaged":[44,55],"obtain":[46],"ground-truth":[47],"labels.":[48],"when":[50],"exclusively":[51],"trained":[52,82],"on":[53,83],"this":[54,69],"ground-truth,":[56],"the":[57,62,91,101,111,118,131,136,145,155,180],"model":[58,100],"is":[59],"agnostic":[60],"inherent":[63],"subjectivity":[64],"expressions.":[67],"In":[68],"work,":[70],"we":[71,99],"therefore":[72],"propose":[73],"an":[74,128],"end-to-end":[75],"Bayesian":[76],"neural":[77],"network":[78],"capable":[79],"being":[81],"a":[84,97,183,186,194],"distribution":[85,103],"also":[89,108,170],"capture":[90],"subjectivity-based":[92],"label":[93],"uncertainty.":[94],"Instead":[95],"Gaussian,":[98],"annotation":[102,132],"using":[104,148],"Student's":[105],"t-distribution,":[106],"which":[107,135],"accounts":[109],"number":[112,196],"available.":[115,199],"We":[116,143,152],"derive":[117],"corresponding":[119],"Kullback-Leibler":[120],"divergence":[121],"loss":[122],"use":[124],"it":[125],"estimator":[129],"distribution,":[133],"mean":[137],"uncertainty":[139,162],"can":[140],"be":[141],"inferred.":[142],"validate":[144],"proposed":[146,156],"method":[147],"two":[149],"in-the-wild":[150],"datasets.":[151],"show":[153],"that":[154,179],"t-distribution":[157,184],"based":[158],"approach":[159],"achieves":[160],"state-of-the-art":[161],"modeling":[163],"results":[164,172],"speech":[166],"emotion":[167],"recognition,":[168],"consistent":[171],"cross-corpora":[174],"evaluations.":[175],"Furthermore,":[176],"analyses":[177],"reveal":[178],"advantage":[181],"over":[185],"Gaussian":[187],"grows":[188],"with":[189],"increasing":[190],"inter-annotator":[191],"correlation":[192],"decreasing":[195]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4300980431","counts_by_year":[],"updated_date":"2025-03-06T06:28:00.807538","created_date":"2022-10-04"}