{"id":"https://openalex.org/W4300980321","doi":"https://doi.org/10.48550/arxiv.2209.15380","title":"Identify ambiguous tasks combining crowdsourced labels by weighting Areas Under the Margin","display_name":"Identify ambiguous tasks combining crowdsourced labels by weighting Areas Under the Margin","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4300980321","doi":"https://doi.org/10.48550/arxiv.2209.15380"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2209.15380","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2209.15380","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5081426755","display_name":"Tanguy Lefort","orcid":"https://orcid.org/0009-0000-6710-3221"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lefort, Tanguy","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5055578306","display_name":"Benjamin Charlier","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Charlier, Benjamin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5015501462","display_name":"Alexis Joly","orcid":"https://orcid.org/0000-0002-2161-9940"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Joly, Alexis","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5033768552","display_name":"Joseph Salmon","orcid":"https://orcid.org/0000-0002-3181-0634"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Salmon, Joseph","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":59},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9961,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9961,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11704","display_name":"Mobile Crowdsensing and Crowdsourcing","score":0.9953,"subfield":{"id":"https://openalex.org/subfields/1706","display_name":"Computer Science Applications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/crowdsourcing","display_name":"Crowdsourcing","score":0.8919976},{"id":"https://openalex.org/keywords/margin","display_name":"Margin (machine learning)","score":0.8424549},{"id":"https://openalex.org/keywords/training-set","display_name":"Training set","score":0.44521812},{"id":"https://openalex.org/keywords/majority-rule","display_name":"Majority Rule","score":0.43544805}],"concepts":[{"id":"https://openalex.org/C62230096","wikidata":"https://www.wikidata.org/wiki/Q275969","display_name":"Crowdsourcing","level":2,"score":0.8919976},{"id":"https://openalex.org/C774472","wikidata":"https://www.wikidata.org/wiki/Q6760393","display_name":"Margin (machine learning)","level":2,"score":0.8424549},{"id":"https://openalex.org/C2780522230","wikidata":"https://www.wikidata.org/wiki/Q1140419","display_name":"Ambiguity","level":2,"score":0.7295083},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7294799},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.7050827},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.63879675},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.6377381},{"id":"https://openalex.org/C183115368","wikidata":"https://www.wikidata.org/wiki/Q856577","display_name":"Weighting","level":2,"score":0.62854385},{"id":"https://openalex.org/C177148314","wikidata":"https://www.wikidata.org/wiki/Q170084","display_name":"Generalization","level":2,"score":0.6040098},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.6031491},{"id":"https://openalex.org/C51632099","wikidata":"https://www.wikidata.org/wiki/Q3985153","display_name":"Training set","level":2,"score":0.44521812},{"id":"https://openalex.org/C153668964","wikidata":"https://www.wikidata.org/wiki/Q27636","display_name":"Majority rule","level":2,"score":0.43544805},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.10681811},{"id":"https://openalex.org/C136764020","wikidata":"https://www.wikidata.org/wiki/Q466","display_name":"World Wide Web","level":1,"score":0.0865618},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.06657955},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.0},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C201995342","wikidata":"https://www.wikidata.org/wiki/Q682496","display_name":"Systems engineering","level":1,"score":0.0},{"id":"https://openalex.org/C126838900","wikidata":"https://www.wikidata.org/wiki/Q77604","display_name":"Radiology","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2209.15380","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2209.15380","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2209.15380","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4386362640","https://openalex.org/W4384486036","https://openalex.org/W3094960827","https://openalex.org/W3032998312","https://openalex.org/W2605569989","https://openalex.org/W2337920774","https://openalex.org/W2109094787","https://openalex.org/W2039876276","https://openalex.org/W1503094549","https://openalex.org/W135177976"],"abstract_inverted_index":{"In":[0,62],"supervised":[1,64],"learning":[2,60,65,96,144],"-":[3,9,67,73],"for":[4,31,58,143],"instance":[5],"in":[6,24,94],"image":[7],"classification":[8],"modern":[10],"massive":[11],"datasets":[12,155,172],"are":[13,28],"commonly":[14],"labeled":[15],"by":[16],"a":[17,35,146,163],"crowd":[18],"of":[19,111,166],"workers.":[20],"The":[21,106],"obtained":[22],"labels":[23],"this":[25],"crowdsourcing":[26],"setting":[27],"then":[29],"aggregated":[30],"training,":[32],"generally":[33],"leveraging":[34],"per-worker":[36],"trust":[37],"score.":[38],"Yet,":[39],"such":[40,156],"workers":[41],"oriented":[42],"approaches":[43],"discard":[44],"the":[45,59,74,77,88,99,103,121,129],"tasks'":[46],"ambiguity.":[47],"Ambiguous":[48],"tasks":[49,93,127],"might":[50],"fool":[51],"expert":[52],"workers,":[53],"which":[54],"is":[55,108],"often":[56],"harmful":[57],"step.":[61],"standard":[63],"settings":[66],"with":[68,145,162,173],"one":[69],"label":[70],"per":[71],"task":[72],"Area":[75],"Under":[76,102],"Margin":[78,104],"(AUM)":[79],"was":[80],"tailored":[81],"to":[82,90,115,133],"identify":[83,91],"mislabeled":[84],"data.":[85],"We":[86,118,137],"adapt":[87],"AUM":[89],"ambiguous":[92,126],"crowdsourced":[95,160],"scenarios,":[97],"introducing":[98],"Weighted":[100],"Areas":[101],"(WAUM).":[105],"WAUM":[107,122],"an":[109],"average":[110],"AUMs":[112],"weighted":[113],"according":[114],"task-dependent":[116],"scores.":[117],"show":[119],"that":[120],"can":[123],"help":[124],"discarding":[125],"from":[128],"training":[130],"set,":[131],"leading":[132],"better":[134],"generalization":[135],"performance.":[136],"report":[138],"improvements":[139],"over":[140],"existing":[141],"strategies":[142],"crowd,":[147],"both":[148],"on":[149,153],"simulated":[150],"settings,":[151],"and":[152,169],"real":[154],"as":[157],"CIFAR-10H":[158],"(a":[159],"dataset":[161],"high":[164],"number":[165],"answered":[167,175],"labels),LabelMe":[168],"Music":[170],"(two":[171],"few":[174],"votes).":[176]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4300980321","counts_by_year":[],"updated_date":"2025-02-26T13:55:54.479316","created_date":"2022-10-04"}