{"id":"https://openalex.org/W4298054039","doi":"https://doi.org/10.48550/arxiv.2209.14065","title":"LL-GNN: Low Latency Graph Neural Networks on FPGAs for High Energy Physics","display_name":"LL-GNN: Low Latency Graph Neural Networks on FPGAs for High Energy Physics","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4298054039","doi":"https://doi.org/10.48550/arxiv.2209.14065"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2209.14065","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://arxiv.org/abs/2209.14065","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5054475218","display_name":"Zhiqiang Que","orcid":"https://orcid.org/0000-0002-9263-6529"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Que, Zhiqiang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5057043409","display_name":"Hongxiang Fan","orcid":"https://orcid.org/0000-0003-2387-5611"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Fan, Hongxiang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5015420000","display_name":"Marcus H. Loo","orcid":"https://orcid.org/0009-0006-1254-8120"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Loo, Marcus","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100317850","display_name":"He Li","orcid":"https://orcid.org/0000-0002-1540-189X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, He","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5031107943","display_name":"Michaela Blott","orcid":"https://orcid.org/0000-0002-7833-4057"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Blott, Michaela","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5106315352","display_name":"M. Pierini","orcid":"https://orcid.org/0000-0003-1939-4268"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Pierini, Maurizio","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5064345784","display_name":"A. Tapper","orcid":"https://orcid.org/0000-0003-4543-864X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Tapper, Alexander","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5057940557","display_name":"Wayne Luk","orcid":"https://orcid.org/0000-0002-6750-927X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Luk, Wayne","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.671932,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":60,"max":70},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10054","display_name":"Parallel Computing and Optimization Techniques","score":0.9723,"subfield":{"id":"https://openalex.org/subfields/1708","display_name":"Hardware and Architecture"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10054","display_name":"Parallel Computing and Optimization Techniques","score":0.9723,"subfield":{"id":"https://openalex.org/subfields/1708","display_name":"Hardware and Architecture"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11948","display_name":"Machine Learning in Materials Science","score":0.9609,"subfield":{"id":"https://openalex.org/subfields/2505","display_name":"Materials Chemistry"},"field":{"id":"https://openalex.org/fields/25","display_name":"Materials Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10502","display_name":"Advanced Memory and Neural Computing","score":0.9598,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C42935608","wikidata":"https://www.wikidata.org/wiki/Q190411","display_name":"Field-programmable gate array","level":2,"score":0.76711786},{"id":"https://openalex.org/C82876162","wikidata":"https://www.wikidata.org/wiki/Q17096504","display_name":"Latency (audio)","level":2,"score":0.66593033},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.65113956},{"id":"https://openalex.org/C17349429","wikidata":"https://www.wikidata.org/wiki/Q1049914","display_name":"Matrix multiplication","level":3,"score":0.4774735},{"id":"https://openalex.org/C149635348","wikidata":"https://www.wikidata.org/wiki/Q193040","display_name":"Embedded system","level":1,"score":0.43162677},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C84114770","wikidata":"https://www.wikidata.org/wiki/Q46344","display_name":"Quantum","level":2,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2209.14065","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3640464","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3640464","source":null,"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2209.14065","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2209.14065","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4391375266","https://openalex.org/W4200391368","https://openalex.org/W3137340192","https://openalex.org/W2748952813","https://openalex.org/W2570254841","https://openalex.org/W2390279801","https://openalex.org/W2363944576","https://openalex.org/W2351041855","https://openalex.org/W2111241003","https://openalex.org/W2096844293"],"abstract_inverted_index":{"This":[0,67],"work":[1,206],"presents":[2,29],"a":[3,30,47,70,87,92,109,120,123,130,141,169,196,230],"novel":[4,71],"reconfigurable":[5],"architecture":[6,150],"for":[7,15,42,144],"Low":[8],"Latency":[9],"Graph":[10],"Neural":[11],"Network":[12],"(LL-GNN)":[13],"designs":[14,163],"particle":[16,27],"detectors,":[17],"delivering":[18],"unprecedented":[19],"low":[20,146,223],"latency":[21,37,103,126,136,147,216],"performance.":[22],"Incorporating":[23],"FPGA-based":[24],"GNNs":[25,228],"into":[26],"detectors":[28],"unique":[31],"challenge":[32],"since":[33],"it":[34,237],"requires":[35],"sub-microsecond":[36],"to":[38,97,182,189,200,209,224,238,258],"deploy":[39],"the":[40,57,61,82,100,158,201,215,248],"networks":[41],"online":[43],"event":[44],"selection":[45],"with":[46,122,164],"data":[48,89,261],"rate":[49],"of":[50,52,160,217,227,251],"hundreds":[51],"terabytes":[53],"per":[54],"second":[55],"in":[56,229],"Level-1":[58],"triggers":[59],"at":[60],"CERN":[62],"Large":[63],"Hadron":[64],"Collider":[65],"experiments.":[66],"paper":[68],"proposes":[69],"outer-product":[72],"based":[73],"matrix":[74,85],"multiplication":[75],"approach,":[76],"which":[77,116,156],"is":[78,95,114,180,221],"enhanced":[79],"by":[80,104,254],"exploiting":[81],"structured":[83],"adjacency":[84],"and":[86,154,186],"column-major":[88],"layout.":[90],"Moreover,":[91,214],"fusion":[93],"step":[94],"introduced":[96],"further":[98],"reduce":[99],"end-to-end":[101],"design":[102,121,133,220,246],"eliminating":[105],"unnecessary":[106],"boundaries.":[107],"Furthermore,":[108],"GNN-specific":[110],"algorithm-hardware":[111],"co-design":[112],"approach":[113],"presented":[115],"not":[117],"only":[118],"finds":[119,129],"much":[124],"better":[125],"but":[127],"also":[128],"high":[131],"accuracy":[132],"under":[134],"given":[135],"constraints.":[137],"To":[138],"facilitate":[139],"this,":[140],"customizable":[142],"template":[143],"this":[145,205],"GNN":[148],"hardware":[149],"has":[151],"been":[152],"designed":[153],"open-sourced,":[155],"enables":[157],"generation":[159,250],"low-latency":[161],"FPGA":[162,178,203,219],"efficient":[165],"resource":[166],"utilization":[167],"using":[168],"high-level":[170],"synthesis":[171],"tool.":[172],"Evaluation":[173],"results":[174],"show":[175],"that":[176],"our":[177,218],"implementation":[179],"up":[181,188],"9.0":[183],"times":[184,191,211],"faster":[185],"achieves":[187,207],"13.1":[190],"higher":[192],"power":[193],"efficiency":[194],"than":[195],"GPU":[197],"implementation.":[198],"Compared":[199],"previous":[202],"implementations,":[204],"6.51":[208],"16.7":[210],"lower":[212],"latency.":[213],"sufficiently":[222],"enable":[225],"deployment":[226],"sub-microsecond,":[231],"real-time":[232],"collider":[233],"trigger":[234,252],"system,":[235],"enabling":[236,255],"benefit":[239],"from":[240],"improved":[241],"accuracy.":[242],"The":[243],"proposed":[244],"LL-GNN":[245],"advances":[247],"next":[249],"systems":[253],"sophisticated":[256],"algorithms":[257],"process":[259],"experimental":[260],"efficiently.":[262]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4298054039","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2025-02-21T15:03:20.423880","created_date":"2022-10-01"}