{"id":"https://openalex.org/W4298052454","doi":"https://doi.org/10.48550/arxiv.2209.13834","title":"Multi-Sample Training for Neural Image Compression","display_name":"Multi-Sample Training for Neural Image Compression","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4298052454","doi":"https://doi.org/10.48550/arxiv.2209.13834"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2209.13834","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2209.13834","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5022610350","display_name":"Tongda Xu","orcid":"https://orcid.org/0000-0002-5594-3992"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xu, Tongda","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100322712","display_name":"Yan Wang","orcid":"https://orcid.org/0000-0002-5344-1884"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Yan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5056572647","display_name":"Dailan He","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"He, Dailan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5046341952","display_name":"Chenjian Gao","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Gao, Chenjian","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100669577","display_name":"Han Gao","orcid":"https://orcid.org/0000-0002-7404-2153"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Gao, Han","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5086830328","display_name":"Kunzan Liu","orcid":"https://orcid.org/0000-0002-3923-3720"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Liu, Kunzan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5103100570","display_name":"Hongwei Qin","orcid":"https://orcid.org/0000-0002-5453-8661"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Qin, Hongwei","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":59},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10522","display_name":"Medical Imaging Techniques and Applications","score":0.9935,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T10522","display_name":"Medical Imaging Techniques and Applications","score":0.9935,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T11105","display_name":"Advanced Image Processing Techniques","score":0.9933,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10052","display_name":"Medical Image Segmentation Techniques","score":0.9925,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/lossy-compression","display_name":"Lossy compression","score":0.5640169},{"id":"https://openalex.org/keywords/sample","display_name":"Sample (material)","score":0.44207895}],"concepts":[{"id":"https://openalex.org/C185429906","wikidata":"https://www.wikidata.org/wiki/Q1130160","display_name":"Estimator","level":2,"score":0.65320015},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6028379},{"id":"https://openalex.org/C165021410","wikidata":"https://www.wikidata.org/wiki/Q55564","display_name":"Lossy compression","level":2,"score":0.5640169},{"id":"https://openalex.org/C28855332","wikidata":"https://www.wikidata.org/wiki/Q198099","display_name":"Quantization (signal processing)","level":2,"score":0.55072534},{"id":"https://openalex.org/C196083921","wikidata":"https://www.wikidata.org/wiki/Q7915758","display_name":"Variance (accounting)","level":2,"score":0.51048744},{"id":"https://openalex.org/C198531522","wikidata":"https://www.wikidata.org/wiki/Q485146","display_name":"Sample (material)","level":2,"score":0.44207895},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.43818384},{"id":"https://openalex.org/C180016635","wikidata":"https://www.wikidata.org/wiki/Q2712821","display_name":"Compression (physics)","level":2,"score":0.41485766},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.3769922},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.36298},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.33090287},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.2706052},{"id":"https://openalex.org/C159985019","wikidata":"https://www.wikidata.org/wiki/Q181790","display_name":"Composite material","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.0},{"id":"https://openalex.org/C121955636","wikidata":"https://www.wikidata.org/wiki/Q4116214","display_name":"Accounting","level":1,"score":0.0},{"id":"https://openalex.org/C43617362","wikidata":"https://www.wikidata.org/wiki/Q170050","display_name":"Chromatography","level":1,"score":0.0},{"id":"https://openalex.org/C144133560","wikidata":"https://www.wikidata.org/wiki/Q4830453","display_name":"Business","level":0,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2209.13834","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2209.13834","pdf_url":"http://arxiv.org/pdf/2209.13834","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2209.13834","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2209.13834","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W50067980","https://openalex.org/W3122602933","https://openalex.org/W2999957348","https://openalex.org/W2964219139","https://openalex.org/W2950038056","https://openalex.org/W2387503788","https://openalex.org/W2289285490","https://openalex.org/W2059658550","https://openalex.org/W1995805316","https://openalex.org/W1544940847"],"abstract_inverted_index":{"This":[0],"paper":[1],"considers":[2],"the":[3,28,68,78,89],"problem":[4],"of":[5,30,71,82,88],"lossy":[6],"neural":[7,143],"image":[8],"compression":[9,144],"(NIC).":[10],"Current":[11],"state-of-the-art":[12],"(sota)":[13],"methods":[14],"adopt":[15],"uniform":[16,69],"posterior":[17,70],"to":[18,26,40,57,141],"approximate":[19,27],"quantization":[20],"noise,":[21],"and":[22,55,80,84,136],"single-sample":[23],"pathwise":[24,83],"estimator":[25],"gradient":[29,104],"evidence":[31],"lower":[32],"bound":[33],"(ELBO).":[34],"In":[35],"this":[36],"paper,":[37],"we":[38,65,93,111],"propose":[39,113],"train":[41],"NIC":[42,72,102,115,130],"with":[43],"multiple-sample":[44,114],"importance":[45],"weighted":[46],"autoencoder":[47],"(IWAE)":[48],"target,":[49],"which":[50,76],"is":[51,134],"tighter":[52],"than":[53],"ELBO":[54],"converges":[56],"log":[58],"likelihood":[59],"as":[60],"sample":[61],"size":[62],"increases.":[63],"First,":[64],"identify":[66],"that":[67,126],"has":[73],"special":[74],"properties,":[75],"affect":[77],"variance":[79,105],"bias":[81],"score":[85],"function":[86],"estimators":[87],"IWAE":[90,119],"target.":[91],"Moreover,":[92],"provide":[94],"insights":[95],"on":[96,108],"a":[97],"commonly":[98],"adopted":[99],"trick":[100],"in":[101],"from":[103],"perspective.":[106],"Based":[107],"those":[109],"analysis,":[110],"further":[112],"(MS-NIC),":[116],"an":[117],"enhanced":[118],"target":[120],"for":[121],"NIC.":[122],"Experimental":[123],"results":[124],"demonstrate":[125],"it":[127],"improves":[128],"sota":[129],"methods.":[131],"Our":[132],"MS-NIC":[133],"plug-and-play,":[135],"can":[137],"be":[138],"easily":[139],"extended":[140],"other":[142],"tasks.":[145]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4298052454","counts_by_year":[],"updated_date":"2025-03-02T00:11:51.619868","created_date":"2022-10-01"}