{"id":"https://openalex.org/W4297950310","doi":"https://doi.org/10.48550/arxiv.2209.13569","title":"Exploring Low Rank Training of Deep Neural Networks","display_name":"Exploring Low Rank Training of Deep Neural Networks","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4297950310","doi":"https://doi.org/10.48550/arxiv.2209.13569"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2209.13569","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2209.13569","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5054907218","display_name":"Siddhartha Rao Kamalakara","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kamalakara, Siddhartha Rao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5003520377","display_name":"Acyr Locatelli","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Locatelli, Acyr","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5033303445","display_name":"Bharat Venkitesh","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Venkitesh, Bharat","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5012276327","display_name":"Jimmy Ba","orcid":"https://orcid.org/0009-0000-9062-4180"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ba, Jimmy","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5029186201","display_name":"Yarin Gal","orcid":"https://orcid.org/0000-0002-2733-2078"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Gal, Yarin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5079288315","display_name":"Aidan N. Gomez","orcid":"https://orcid.org/0000-0001-5601-5437"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Gomez, Aidan N.","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.609064,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":60,"max":70},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11612","display_name":"Stochastic Gradient Optimization Techniques","score":0.9966,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11612","display_name":"Stochastic Gradient Optimization Techniques","score":0.9966,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12814","display_name":"Gaussian Processes and Bayesian Inference","score":0.9858,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11206","display_name":"Model Reduction and Neural Networks","score":0.9813,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/rank","display_name":"Rank (graph theory)","score":0.79111135},{"id":"https://openalex.org/keywords/consumption","display_name":"Consumption","score":0.4673332}],"concepts":[{"id":"https://openalex.org/C164226766","wikidata":"https://www.wikidata.org/wiki/Q7293202","display_name":"Rank (graph theory)","level":2,"score":0.79111135},{"id":"https://openalex.org/C2777211547","wikidata":"https://www.wikidata.org/wiki/Q17141490","display_name":"Training (meteorology)","level":2,"score":0.7436741},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.643396},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5759691},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.54109484},{"id":"https://openalex.org/C9652623","wikidata":"https://www.wikidata.org/wiki/Q190109","display_name":"Field (mathematics)","level":2,"score":0.5328959},{"id":"https://openalex.org/C18762648","wikidata":"https://www.wikidata.org/wiki/Q42213","display_name":"Work (physics)","level":2,"score":0.5224123},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.51071787},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.47078034},{"id":"https://openalex.org/C30772137","wikidata":"https://www.wikidata.org/wiki/Q5164762","display_name":"Consumption (sociology)","level":2,"score":0.4673332},{"id":"https://openalex.org/C2778572836","wikidata":"https://www.wikidata.org/wiki/Q380933","display_name":"Space (punctuation)","level":2,"score":0.43082985},{"id":"https://openalex.org/C2522767166","wikidata":"https://www.wikidata.org/wiki/Q2374463","display_name":"Data science","level":1,"score":0.36061308},{"id":"https://openalex.org/C144024400","wikidata":"https://www.wikidata.org/wiki/Q21201","display_name":"Sociology","level":0,"score":0.20798078},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.13355693},{"id":"https://openalex.org/C36289849","wikidata":"https://www.wikidata.org/wiki/Q34749","display_name":"Social science","level":1,"score":0.09322384},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.09310678},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.077575594},{"id":"https://openalex.org/C78519656","wikidata":"https://www.wikidata.org/wiki/Q101333","display_name":"Mechanical engineering","level":1,"score":0.0},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0},{"id":"https://openalex.org/C153294291","wikidata":"https://www.wikidata.org/wiki/Q25261","display_name":"Meteorology","level":1,"score":0.0},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2209.13569","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2209.13569","pdf_url":"http://arxiv.org/pdf/2209.13569","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2209.13569","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2209.13569","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4366179611","https://openalex.org/W3216976533","https://openalex.org/W2997094352","https://openalex.org/W2996078371","https://openalex.org/W2810751659","https://openalex.org/W258997015","https://openalex.org/W2495260952","https://openalex.org/W230091440","https://openalex.org/W2233261550","https://openalex.org/W100620283"],"abstract_inverted_index":{"Training":[0],"deep":[1],"neural":[2],"networks":[3,43],"in":[4,24,46,67,84,88],"low":[5,38,47],"rank,":[6],"i.e.":[7],"with":[8,50],"factorised":[9],"layers,":[10],"is":[11],"of":[12,26,41],"particular":[13],"interest":[14],"to":[15],"the":[16,85,89],"community:":[17],"it":[18],"offers":[19],"efficiency":[20],"over":[21],"unfactorised":[22],"training":[23,31,45],"terms":[25],"both":[27],"memory":[28],"consumption":[29],"and":[30,44,69],"time.":[32],"Prior":[33],"work":[34,65],"has":[35],"focused":[36],"on":[37,73],"rank":[39,48],"approximations":[40],"pre-trained":[42],"space":[49],"additional":[51],"objectives,":[52],"offering":[53],"various":[54],"ad":[55],"hoc":[56],"explanations":[57],"for":[58],"chosen":[59],"practice.":[60],"We":[61],"analyse":[62],"techniques":[63],"that":[64,95],"well":[66],"practice,":[68],"through":[70],"extensive":[71],"ablations":[72],"models":[74],"such":[75],"as":[76],"GPT2":[77],"we":[78],"provide":[79],"evidence":[80],"falsifying":[81],"common":[82],"beliefs":[83],"field,":[86],"hinting":[87],"process":[90],"at":[91],"exciting":[92],"research":[93],"opportunities":[94],"still":[96],"need":[97],"answering.":[98]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4297950310","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2025-01-22T17:32:08.943654","created_date":"2022-10-01"}