{"id":"https://openalex.org/W4297940214","doi":"https://doi.org/10.48550/arxiv.2209.12894","title":"Biologically-Plausible Determinant Maximization Neural Networks for Blind Separation of Correlated Sources","display_name":"Biologically-Plausible Determinant Maximization Neural Networks for Blind Separation of Correlated Sources","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4297940214","doi":"https://doi.org/10.48550/arxiv.2209.12894"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2209.12894","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2209.12894","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5034379463","display_name":"Bariscan Bozkurt","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Bozkurt, Bariscan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5023195984","display_name":"Cengiz Pehlevan","orcid":"https://orcid.org/0000-0001-9767-6063"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Pehlevan, Cengiz","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5025697702","display_name":"Alper T. Erdo\u011fan","orcid":"https://orcid.org/0000-0003-0876-2897"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Erdogan, Alper T.","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":3,"citation_normalized_percentile":{"value":0.862538,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":76,"max":79},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11447","display_name":"Blind Source Separation Techniques","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11447","display_name":"Blind Source Separation Techniques","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9793,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10860","display_name":"Speech and Audio Processing","score":0.9626,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/source-separation","display_name":"Source Separation","score":0.57206404},{"id":"https://openalex.org/keywords/similarity","display_name":"Similarity (geometry)","score":0.46031448},{"id":"https://openalex.org/keywords/maximization","display_name":"Maximization","score":0.43538734}],"concepts":[{"id":"https://openalex.org/C120317606","wikidata":"https://www.wikidata.org/wiki/Q17105967","display_name":"Blind signal separation","level":3,"score":0.8059705},{"id":"https://openalex.org/C2776864781","wikidata":"https://www.wikidata.org/wiki/Q52617913","display_name":"Source separation","level":2,"score":0.57206404},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.564109},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5564408},{"id":"https://openalex.org/C165064840","wikidata":"https://www.wikidata.org/wiki/Q1321061","display_name":"Matching (statistics)","level":2,"score":0.474874},{"id":"https://openalex.org/C51432778","wikidata":"https://www.wikidata.org/wiki/Q1259145","display_name":"Independent component analysis","level":2,"score":0.4748514},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.46645775},{"id":"https://openalex.org/C103278499","wikidata":"https://www.wikidata.org/wiki/Q254465","display_name":"Similarity (geometry)","level":3,"score":0.46031448},{"id":"https://openalex.org/C2776330181","wikidata":"https://www.wikidata.org/wiki/Q18358244","display_name":"Maximization","level":2,"score":0.43538734},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.42664957},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.3734145},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.33311117},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.21409053},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.16239518},{"id":"https://openalex.org/C127162648","wikidata":"https://www.wikidata.org/wiki/Q16858953","display_name":"Channel (broadcasting)","level":2,"score":0.14365143},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.0},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2209.12894","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2209.12894","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2209.12894","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.48,"display_name":"Peace, justice, and strong institutions","id":"https://metadata.un.org/sdg/16"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4281722104","https://openalex.org/W2553224454","https://openalex.org/W2390344110","https://openalex.org/W2364896863","https://openalex.org/W2187523794","https://openalex.org/W2118307209","https://openalex.org/W2107364365","https://openalex.org/W2046761971","https://openalex.org/W1785857632","https://openalex.org/W1503525627"],"abstract_inverted_index":{"Extraction":[0],"of":[1,4,12,43,52,54,71,93,121,132,185],"latent":[2],"sources":[3,123,180],"complex":[5],"stimuli":[6],"is":[7],"critical":[8],"for":[9,67,142],"making":[10],"sense":[11],"the":[13,16,50,68,88,101,125,130,133,143],"world.":[14],"While":[15],"brain":[17],"solves":[18],"this":[19,59,148],"blind":[20,69],"source":[21,89,102,144,186,200],"separation":[22,70,92,201],"(BSS)":[23],"problem":[24],"continuously,":[25],"its":[26],"algorithms":[27,35,174,192,197],"remain":[28],"unknown.":[29],"Previous":[30],"work":[31],"on":[32,87,198],"biologically-plausible":[33,64,171,195],"BSS":[34,196],"assumed":[36],"that":[37,100,158,175,190],"observed":[38],"signals":[39],"are":[40,104],"linear":[41,161],"mixtures":[42,178],"statistically":[44],"independent":[45],"or":[46],"uncorrelated":[47],"sources,":[48],"limiting":[49],"domain":[51],"applicability":[53],"these":[55,122],"algorithms.":[56],"To":[57],"overcome":[58],"limitation,":[60],"we":[61,79,98,118,168],"propose":[62],"novel":[63],"neural":[65,172],"networks":[66],"potentially":[72,94],"dependent/correlated":[73,95],"sources.":[74,96],"Differing":[75],"from":[76,147,182],"previous":[77],"work,":[78],"assume":[80,99],"some":[81],"general":[82],"geometric,":[83],"not":[84],"statistical,":[85],"conditions":[86],"vectors":[90,103],"allowing":[91],"Concretely,":[97],"sufficiently":[105],"scattered":[106],"in":[107],"their":[108],"domains":[109],"which":[110,128],"can":[111,176],"be":[112],"described":[113],"by":[114,124,164],"certain":[115],"polytopes.":[116],"Then,":[117],"consider":[119],"recovery":[120],"Det-Max":[126],"criterion,":[127],"maximizes":[129],"determinant":[131],"output":[134],"correlation":[135],"matrix":[136],"to":[137],"enforce":[138],"a":[139,153,183],"similar":[140],"spread":[141],"estimates.":[145],"Starting":[146],"normative":[149],"principle,":[150],"and":[151],"using":[152],"weighted":[154],"similarity":[155],"matching":[156],"approach":[157],"enables":[159],"arbitrary":[160],"transformations":[162],"adaptable":[163],"local":[165],"learning":[166],"rules,":[167],"derive":[169],"two-layer":[170],"network":[173],"separate":[177],"into":[179],"coming":[181],"variety":[184],"domains.":[187],"We":[188],"demonstrate":[189],"our":[191],"outperform":[193],"other":[194],"correlated":[199],"problems.":[202]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4297940214","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":1}],"updated_date":"2025-01-22T03:48:20.489547","created_date":"2022-10-01"}