{"id":"https://openalex.org/W4297164062","doi":"https://doi.org/10.48550/arxiv.2209.11582","title":"Pose-Aided Video-based Person Re-Identification via Recurrent Graph Convolutional Network","display_name":"Pose-Aided Video-based Person Re-Identification via Recurrent Graph Convolutional Network","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4297164062","doi":"https://doi.org/10.48550/arxiv.2209.11582"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2209.11582","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2209.11582","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5000641290","display_name":"Honghu Pan","orcid":"https://orcid.org/0000-0003-3319-692X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Pan, Honghu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100393714","display_name":"Qiao Liu","orcid":"https://orcid.org/0000-0003-0885-7976"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Liu, Qiao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5031480448","display_name":"Yongyong Chen","orcid":"https://orcid.org/0000-0003-1970-1993"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chen, Yongyong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5023794124","display_name":"Yunqi He","orcid":"https://orcid.org/0000-0002-5265-3244"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"He, Yunqi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100342744","display_name":"Zheng Yuan","orcid":"https://orcid.org/0009-0005-1079-6481"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zheng, Yuan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101733681","display_name":"Feng Zheng","orcid":"https://orcid.org/0000-0002-0721-5288"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zheng, Feng","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5100740564","display_name":"Zhenyu He","orcid":"https://orcid.org/0000-0002-2546-8721"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"He, Zhenyu","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9978,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12740","display_name":"Gait Recognition and Analysis","score":0.9975,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.5953623},{"id":"https://openalex.org/keywords/discriminative-model","display_name":"Discriminative model","score":0.56006324},{"id":"https://openalex.org/keywords/feature-learning","display_name":"Feature Learning","score":0.48121718}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.80700755},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.690111},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.5953623},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.5873014},{"id":"https://openalex.org/C97931131","wikidata":"https://www.wikidata.org/wiki/Q5282087","display_name":"Discriminative model","level":2,"score":0.56006324},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.50024366},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.49779463},{"id":"https://openalex.org/C59404180","wikidata":"https://www.wikidata.org/wiki/Q17013334","display_name":"Feature learning","level":2,"score":0.48121718},{"id":"https://openalex.org/C126042441","wikidata":"https://www.wikidata.org/wiki/Q1324888","display_name":"Frame (networking)","level":2,"score":0.45347008},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.43226606},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.4248349},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.41315433},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.11551669},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2209.11582","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2209.11582","pdf_url":"http://arxiv.org/pdf/2209.11582","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2209.11582","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2209.11582","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Reduced inequalities","score":0.74,"id":"https://metadata.un.org/sdg/10"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4389116644","https://openalex.org/W4388405611","https://openalex.org/W4309346246","https://openalex.org/W3208297503","https://openalex.org/W3119773509","https://openalex.org/W3103844505","https://openalex.org/W2964117661","https://openalex.org/W2889153461","https://openalex.org/W2619127353","https://openalex.org/W2153315159"],"abstract_inverted_index":{"Existing":[0],"methods":[1],"for":[2,59,82],"video-based":[3,197],"person":[4],"re-identification":[5],"(ReID)":[6],"mainly":[7],"learn":[8,50,70,85,122,181],"the":[9,25,51,56,71,86,92,109,123,127,141,166,171,175,182,192,210,217],"appearance":[10,26,57,72,221],"feature":[11,18,22,54,58,73,213],"of":[12,126,144,160,184,219],"a":[13,17,21,65,105,115,133,156],"given":[14],"pedestrian":[15,93],"via":[16],"extractor":[19],"and":[20,44,74,77,103,147,162,187,203],"aggregator.":[23],"However,":[24],"models":[27],"would":[28],"fail":[29],"when":[30],"different":[31,38,41],"pedestrians":[32,39],"have":[33,40],"similar":[34],"appearances.":[35],"Considering":[36],"that":[37,209],"walking":[42],"postures":[43],"body":[45],"proportions,":[46],"we":[47,63,89,154],"propose":[48,155],"to":[49,68,121,138,164,180],"discriminative":[52],"pose":[53,75,87,94,101,110,129,212],"beyond":[55],"video":[60],"retrieval.":[61],"Specifically,":[62],"implement":[64],"two-branch":[66],"architecture":[67],"separately":[69],"feature,":[76,88],"then":[78,113],"concatenate":[79],"them":[80],"together":[81],"inference.":[83],"To":[84],"first":[90],"detect":[91],"in":[95],"each":[96,185,188],"frame":[97],"through":[98],"an":[99],"off-the-shelf":[100],"detector,":[102],"construct":[104],"temporal":[106,128,167],"graph":[107,117,168],"using":[108],"sequence.":[111],"We":[112,190],"exploit":[114],"recurrent":[116],"convolutional":[118],"network":[119],"(RGCN)":[120],"node":[124,172,186],"embeddings":[125],"graph,":[130],"which":[131],"devises":[132],"global":[134],"information":[135],"propagation":[136],"mechanism":[137,177],"simultaneously":[139],"achieve":[140],"neighborhood":[142],"aggregation":[143],"intra-frame":[145],"nodes":[146],"message":[148],"passing":[149],"among":[150],"inter-frame":[151],"graphs.":[152],"Finally,":[153],"dual-attention":[157],"method":[158,194],"consisting":[159],"node-attention":[161],"time-attention":[163],"obtain":[165],"representation":[169],"from":[170],"embeddings,":[173],"where":[174],"self-attention":[176],"is":[178],"employed":[179],"importance":[183],"frame.":[189],"verify":[191],"proposed":[193],"on":[195],"three":[196],"ReID":[198],"datasets,":[199],"i.e.,":[200],"Mars,":[201],"DukeMTMC":[202],"iLIDS-VID,":[204],"whose":[205],"experimental":[206],"results":[207],"demonstrate":[208],"learned":[211],"can":[214],"effectively":[215],"improve":[216],"performance":[218],"existing":[220],"models.":[222]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4297164062","counts_by_year":[],"updated_date":"2024-12-15T21:55:22.975036","created_date":"2022-09-27"}