{"id":"https://openalex.org/W4296567377","doi":"https://doi.org/10.48550/arxiv.2209.08776","title":"NeRF-SOS: Any-View Self-supervised Object Segmentation on Complex Scenes","display_name":"NeRF-SOS: Any-View Self-supervised Object Segmentation on Complex Scenes","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4296567377","doi":"https://doi.org/10.48550/arxiv.2209.08776"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2209.08776","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2209.08776","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101178345","display_name":"Zhiwen Fan","orcid":"https://orcid.org/0000-0002-8302-7465"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Fan, Zhiwen","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5009649686","display_name":"Peihao Wang","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Peihao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5103086800","display_name":"Xinyu Gong","orcid":"https://orcid.org/0000-0002-6993-136X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Gong, Xinyu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101505105","display_name":"Yifan Jiang","orcid":"https://orcid.org/0009-0007-5334-9627"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jiang, Yifan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5084521327","display_name":"Dejia Xu","orcid":"https://orcid.org/0000-0001-8474-3095"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xu, Dejia","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5048522863","display_name":"Zhangyang Wang","orcid":"https://orcid.org/0000-0002-2050-5693"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Zhangyang","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":13,"citation_normalized_percentile":{"value":0.854089,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":93,"max":94},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11605","display_name":"Visual Attention and Saliency Detection","score":0.9933,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11164","display_name":"Remote Sensing and LiDAR Applications","score":0.9921,"subfield":{"id":"https://openalex.org/subfields/2305","display_name":"Environmental Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/supervised-learning","display_name":"Supervised Learning","score":0.46874884},{"id":"https://openalex.org/keywords/perceptron","display_name":"Perceptron","score":0.42395496}],"concepts":[{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.83761674},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7601829},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7551453},{"id":"https://openalex.org/C2781238097","wikidata":"https://www.wikidata.org/wiki/Q175026","display_name":"Object (grammar)","level":2,"score":0.61253333},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.60696834},{"id":"https://openalex.org/C136389625","wikidata":"https://www.wikidata.org/wiki/Q334384","display_name":"Supervised learning","level":3,"score":0.46874884},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.43437788},{"id":"https://openalex.org/C60908668","wikidata":"https://www.wikidata.org/wiki/Q690207","display_name":"Perceptron","level":3,"score":0.42395496},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.37682736},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.29959947}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2209.08776","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2209.08776","pdf_url":"http://arxiv.org/pdf/2209.08776","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2209.08776","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2209.08776","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Sustainable cities and communities","score":0.65,"id":"https://metadata.un.org/sdg/11"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W45198419","https://openalex.org/W4379231730","https://openalex.org/W4293870204","https://openalex.org/W3194278305","https://openalex.org/W2289648981","https://openalex.org/W2082756648","https://openalex.org/W2001427828","https://openalex.org/W1613359937","https://openalex.org/W1565459987","https://openalex.org/W1522196789"],"abstract_inverted_index":{"Neural":[0],"volumetric":[1],"representations":[2],"have":[3],"shown":[4],"the":[5,37,69,136,174,183,206],"potential":[6],"that":[7,154],"Multi-layer":[8],"Perceptrons":[9],"(MLPs)":[10],"can":[11,30,147],"be":[12,148],"optimized":[13],"with":[14,87],"multi-view":[15],"calibrated":[16],"images":[17],"to":[18,45,99,125,150,157,205],"represent":[19],"scene":[20,54],"geometry":[21,119],"and":[22,57,95,118,135,161,168,179,194],"appearance,":[23],"without":[24],"explicit":[25],"3D":[26],"supervision.":[27],"Object":[28,89],"segmentation":[29,44,76,94,129,145,163],"enrich":[31],"many":[32],"downstream":[33],"applications":[34],"based":[35],"on":[36,173,208],"learned":[38],"radiance":[39,97],"field.":[40],"However,":[41],"introducing":[42],"hand-crafted":[43],"define":[46],"regions":[47],"of":[48,71,185],"interest":[49],"in":[50,102,115],"a":[51,106,110],"complex":[52,80],"real-world":[53,81],"is":[55],"non-trivial":[56],"expensive":[58],"as":[59],"it":[60],"acquires":[61],"per":[62],"view":[63,104],"annotation.":[64],"This":[65],"paper":[66],"carries":[67],"out":[68],"exploration":[70],"self-supervised":[72,137,143,192],"learning":[73],"for":[74,79,165,212],"object":[75,93,144],"using":[77],"NeRF":[78,86,123,152],"scenes.":[82],"Our":[83],"framework,":[84],"called":[85],"Self-supervised":[88],"Segmentation":[90],"NeRF-SOS,":[91],"couples":[92],"neural":[96],"field":[98],"segment":[100],"objects":[101],"any":[103],"within":[105],"scene.":[107],"By":[108],"proposing":[109],"novel":[111],"collaborative":[112],"contrastive":[113],"loss":[114],"both":[116,155,166],"appearance":[117],"levels,":[120],"NeRF-SOS":[121],"encourages":[122],"models":[124,153],"distill":[126],"compact":[127],"geometry-aware":[128],"clusters":[130],"from":[131],"their":[132],"density":[133],"fields":[134],"pre-trained":[138],"2D":[139],"visual":[140],"features.":[141],"The":[142],"framework":[146],"applied":[149],"various":[151],"lead":[156],"photo-realistic":[158],"rendering":[159],"results":[160,172],"convincing":[162],"maps":[164],"indoor":[167],"outdoor":[169],"scenarios.":[170],"Extensive":[171],"LLFF,":[175],"Tank":[176],"&":[177],"Temple,":[178],"BlendedMVS":[180],"datasets":[181],"validate":[182],"effectiveness":[184],"NeRF-SOS.":[186],"It":[187],"consistently":[188],"surpasses":[189],"other":[190],"2D-based":[191],"baselines":[193],"predicts":[195],"finer":[196],"semantics":[197],"masks":[198],"than":[199],"existing":[200],"supervised":[201],"counterparts.":[202],"Please":[203],"refer":[204],"video":[207],"our":[209],"project":[210],"page":[211],"more":[213],"details:https://zhiwenfan.github.io/NeRF-SOS.":[214]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4296567377","counts_by_year":[{"year":2024,"cited_by_count":6},{"year":2023,"cited_by_count":7}],"updated_date":"2024-12-12T13:22:32.268415","created_date":"2022-09-21"}