{"id":"https://openalex.org/W4296548867","doi":"https://doi.org/10.48550/arxiv.2209.08403","title":"Advertising Media and Target Audience Optimization via High-dimensional Bandits","display_name":"Advertising Media and Target Audience Optimization via High-dimensional Bandits","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4296548867","doi":"https://doi.org/10.48550/arxiv.2209.08403"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2209.08403","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2209.08403","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5071713208","display_name":"Wenjia Ba","orcid":"https://orcid.org/0000-0003-3427-415X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ba, Wenjia","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5103400346","display_name":"J. M. Harrison","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Harrison, J. Michael","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5004863713","display_name":"Harikesh S. Nair","orcid":"https://orcid.org/0000-0003-1697-7767"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Nair, Harikesh S.","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12101","display_name":"Advanced Bandit Algorithms Research","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T12101","display_name":"Advanced Bandit Algorithms Research","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11161","display_name":"Consumer Market Behavior and Pricing","score":0.9654,"subfield":{"id":"https://openalex.org/subfields/1406","display_name":"Marketing"},"field":{"id":"https://openalex.org/fields/14","display_name":"Business, Management and Accounting"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11704","display_name":"Mobile Crowdsensing and Crowdsourcing","score":0.9009,"subfield":{"id":"https://openalex.org/subfields/1706","display_name":"Computer Science Applications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/lasso","display_name":"Lasso","score":0.70324105}],"concepts":[{"id":"https://openalex.org/C37616216","wikidata":"https://www.wikidata.org/wiki/Q3218363","display_name":"Lasso (programming language)","level":2,"score":0.70324105},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6999228},{"id":"https://openalex.org/C111030470","wikidata":"https://www.wikidata.org/wiki/Q1430460","display_name":"Curse of dimensionality","level":2,"score":0.5380205},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.44115734},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.37533233},{"id":"https://openalex.org/C136764020","wikidata":"https://www.wikidata.org/wiki/Q466","display_name":"World Wide Web","level":1,"score":0.11297932}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2209.08403","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2209.08403","pdf_url":"http://arxiv.org/pdf/2209.08403","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2209.08403","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2209.08403","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4386462264","https://openalex.org/W4364306694","https://openalex.org/W4312192474","https://openalex.org/W4306674287","https://openalex.org/W4283697347","https://openalex.org/W4210805261","https://openalex.org/W3170094116","https://openalex.org/W3107602296","https://openalex.org/W3046775127","https://openalex.org/W2961085424"],"abstract_inverted_index":{"We":[0],"present":[1],"a":[2,53,60,97,121,128,150,166],"data-driven":[3],"algorithm":[4,18,103,162],"that":[5,140,156,180],"advertisers":[6],"can":[7,181],"use":[8],"to":[9,22,30,65,70,80,85,132,170],"automate":[10],"their":[11],"digital":[12],"ad-campaigns":[13],"at":[14],"online":[15,40],"publishers.":[16],"The":[17,42,161],"enables":[19],"the":[20,32,46,72,142,147,171,178,186,196,209],"advertiser":[21],"search":[23,73,87],"across":[24,159],"available":[25],"target":[26],"audiences":[27],"and":[28,69,89,149,169,192,200],"ad-media":[29],"find":[31],"best":[33,47,172],"possible":[34],"combination":[35,49],"for":[36,62,74,108,125,154],"its":[37,202],"campaign":[38],"via":[39],"experimentation.":[41],"problem":[43],"of":[44,55,99,173,185],"finding":[45],"audience-ad":[48],"is":[50,163,177,198],"complicated":[51],"by":[52,117,146],"number":[54],"distinctive":[56],"challenges,":[57],"including":[58],"(a)":[59],"need":[61],"active":[63,126],"exploration":[64],"resolve":[66],"prior":[67],"uncertainty":[68],"speed":[71],"profitable":[75],"combinations,":[76],"(b)":[77],"many":[78],"combinations":[79],"choose":[81],"from,":[82],"giving":[83],"rise":[84],"high-dimensional":[86,211],"formulations,":[88],"(c)":[90],"very":[91],"low":[92],"success":[93],"probabilities,":[94],"typically":[95],"just":[96],"fraction":[98],"one":[100],"percent.":[101],"Our":[102],"(designated":[104],"LRDL,":[105],"an":[106,136],"acronym":[107],"Logistic":[109],"Regression":[110],"with":[111,190],"Debiased":[112],"Lasso)":[113],"addresses":[114],"these":[115],"challenges":[116,187],"combining":[118],"four":[119],"elements:":[120],"multiarmed":[122],"bandit":[123,212],"framework":[124],"exploration;":[127],"Lasso":[129],"penalty":[130],"function":[131],"handle":[133],"high":[134],"dimensionality;":[135],"inbuilt":[137],"debiasing":[138],"kernel":[139],"handles":[141],"regularization":[143],"bias":[144],"induced":[145],"Lasso;":[148],"semi-parametric":[151],"regression":[152],"model":[153],"outcomes":[155],"promotes":[157],"cross-learning":[158],"arms.":[160],"implemented":[164],"as":[165],"Thompson":[167],"Sampler,":[168],"our":[174],"knowledge,":[175],"it":[176],"first":[179],"practically":[182],"address":[183],"all":[184],"above.":[188],"Simulations":[189],"real":[191],"synthetic":[193],"data":[194],"show":[195],"method":[197],"effective":[199],"document":[201],"superior":[203],"performance":[204],"against":[205],"several":[206],"benchmarks":[207],"from":[208],"recent":[210],"literature.":[213]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4296548867","counts_by_year":[],"updated_date":"2025-01-04T10:03:28.203270","created_date":"2022-09-21"}