{"id":"https://openalex.org/W4297847289","doi":"https://doi.org/10.48550/arxiv.2209.07163","title":"Morphology-Aware Interactive Keypoint Estimation","display_name":"Morphology-Aware Interactive Keypoint Estimation","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4297847289","doi":"https://doi.org/10.48550/arxiv.2209.07163"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2209.07163","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2209.07163","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100376579","display_name":"Jin-Hee Kim","orcid":"https://orcid.org/0000-0001-6061-5363"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kim, Jinhee","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100643808","display_name":"Tae-Sung Kim","orcid":"https://orcid.org/0000-0002-4976-6459"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kim, Taesung","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100400957","display_name":"Taewoo Kim","orcid":"https://orcid.org/0000-0003-4131-0841"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kim, Taewoo","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5047912015","display_name":"Jaegul Choo","orcid":"https://orcid.org/0000-0003-1071-4835"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Choo, Jaegul","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100359358","display_name":"Dong-Wook Kim","orcid":"https://orcid.org/0000-0002-4668-743X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kim, Dong-Wook","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5072806358","display_name":"Byung-Duk Ahn","orcid":"https://orcid.org/0000-0002-4352-4707"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ahn, Byungduk","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5103079118","display_name":"Inseok Song","orcid":"https://orcid.org/0009-0000-9325-8518"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Song, In-Seok","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5100666237","display_name":"Yoon\u2010Ji Kim","orcid":"https://orcid.org/0000-0002-7030-569X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kim, Yoon-Ji","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":59},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9804,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9804,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10862","display_name":"AI in cancer detection","score":0.9782,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":0.9687,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C2780513914","wikidata":"https://www.wikidata.org/wiki/Q18210350","display_name":"Bottleneck","level":2,"score":0.889927},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8437165},{"id":"https://openalex.org/C2776321320","wikidata":"https://www.wikidata.org/wiki/Q857525","display_name":"Annotation","level":2,"score":0.766664},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6423904},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.6251353},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.4609078},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.4328946},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.3708215},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.37035748},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.34189528},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0},{"id":"https://openalex.org/C149635348","wikidata":"https://www.wikidata.org/wiki/Q193040","display_name":"Embedded system","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2209.07163","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2209.07163","pdf_url":"http://arxiv.org/pdf/2209.07163","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2209.07163","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2209.07163","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4382618745","https://openalex.org/W4380075502","https://openalex.org/W2885125400","https://openalex.org/W2748922771","https://openalex.org/W2595172197","https://openalex.org/W2127970246","https://openalex.org/W2084856301","https://openalex.org/W1989889224","https://openalex.org/W1973775000","https://openalex.org/W1001352512"],"abstract_inverted_index":{"Diagnosis":[0],"based":[1],"on":[2,159],"medical":[3,53],"images,":[4,8],"such":[5],"as":[6],"X-ray":[7,93],"often":[9],"involves":[10,19],"manual":[11,119],"annotation":[12,143],"of":[13,79,136,154],"anatomical":[14,100],"keypoints.":[15],"However,":[16,55],"this":[17,36],"process":[18],"significant":[20],"human":[21],"efforts":[22],"and":[23,44,69,97,126,148],"can":[24,109],"thus":[25],"be":[26,64],"a":[27,85,103],"bottleneck":[28],"in":[29,49,52,106,140],"the":[30,99,127,134,137,142],"diagnostic":[31],"process.":[32],"To":[33],"fully":[34],"automate":[35],"procedure,":[37],"deep-learning-based":[38],"methods":[39,57],"have":[40,45,59],"been":[41],"widely":[42],"proposed":[43,138],"achieved":[46],"high":[47],"performance":[48],"detecting":[50],"keypoints":[51,101,112],"images.":[54],"these":[56],"still":[58],"clinical":[60],"limitations:":[61],"accuracy":[62],"cannot":[63],"guaranteed":[65],"for":[66,73],"all":[67,77],"cases,":[68],"it":[70],"is":[71,157],"necessary":[72],"doctors":[74,108],"to":[75],"double-check":[76],"predictions":[78],"models.":[80],"In":[81],"response,":[82],"we":[83,132],"propose":[84],"novel":[86],"deep":[87],"neural":[88],"network":[89],"that,":[90],"given":[91],"an":[92],"image,":[94],"automatically":[95],"detects":[96],"refines":[98],"through":[102],"user-interactive":[104],"system":[105],"which":[107],"fix":[110],"mispredicted":[111],"with":[113],"fewer":[114],"clicks":[115],"than":[116],"needed":[117],"during":[118],"revision.":[120],"Using":[121],"our":[122,155,160],"own":[123],"collected":[124],"data":[125],"publicly":[128],"available":[129,158],"AASCE":[130],"dataset,":[131],"demonstrate":[133],"effectiveness":[135],"method":[139],"reducing":[141],"costs":[144],"via":[145],"extensive":[146],"quantitative":[147],"qualitative":[149],"results.":[150],"A":[151],"demo":[152],"video":[153],"approach":[156],"project":[161],"webpage.":[162]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4297847289","counts_by_year":[],"updated_date":"2025-03-06T16:19:38.122057","created_date":"2022-10-01"}