{"id":"https://openalex.org/W4295362409","doi":"https://doi.org/10.48550/arxiv.2209.02048","title":"Fuzzy Attention Neural Network to Tackle Discontinuity in Airway Segmentation","display_name":"Fuzzy Attention Neural Network to Tackle Discontinuity in Airway Segmentation","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4295362409","doi":"https://doi.org/10.48550/arxiv.2209.02048"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2209.02048","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2209.02048","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100680991","display_name":"Nan Yang","orcid":"https://orcid.org/0000-0002-4542-3336"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Nan, Yang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5017326471","display_name":"Javier Del Ser","orcid":"https://orcid.org/0000-0002-1260-9775"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Del Ser, Javier","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5058097467","display_name":"Zeyu Tang","orcid":"https://orcid.org/0000-0003-3789-2906"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Tang, Zeyu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5031131124","display_name":"Peng Tang","orcid":"https://orcid.org/0000-0003-4099-6677"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Tang, Peng","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5043070120","display_name":"Xiaodan Xing","orcid":"https://orcid.org/0000-0002-2468-9266"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xing, Xiaodan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5085166013","display_name":"Yingying Fang","orcid":"https://orcid.org/0000-0001-6334-8635"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Fang, Yingying","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5045016749","display_name":"Francisco Herrera","orcid":"https://orcid.org/0000-0002-7283-312X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Herrera, Francisco","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5003799782","display_name":"Witold Pedrycz","orcid":"https://orcid.org/0000-0002-9335-9930"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Pedrycz, Witold","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5016194066","display_name":"Simon Walsh","orcid":"https://orcid.org/0000-0003-0497-5297"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Walsh, Simon","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5100436460","display_name":"Guang Yang","orcid":"https://orcid.org/0000-0001-7344-7733"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yang, Guang","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.71693,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":60,"max":70},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11775","display_name":"COVID-19 diagnosis using AI","score":0.9824,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T11775","display_name":"COVID-19 diagnosis using AI","score":0.9824,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9816,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10202","display_name":"Lung Cancer Diagnosis and Treatment","score":0.9686,"subfield":{"id":"https://openalex.org/subfields/2740","display_name":"Pulmonary and Respiratory Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.6401753},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.45660168}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6537152},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.6401753},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.6347207},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5840571},{"id":"https://openalex.org/C58166","wikidata":"https://www.wikidata.org/wiki/Q224821","display_name":"Fuzzy logic","level":2,"score":0.5392301},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4788863},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.45660168},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.44209966},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.3321291},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2209.02048","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2209.02048","pdf_url":"http://arxiv.org/pdf/2209.02048","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2209.02048","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2209.02048","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/3","score":0.49,"display_name":"Good health and well-being"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4281727072","https://openalex.org/W3154990682","https://openalex.org/W2770593030","https://openalex.org/W2560201613","https://openalex.org/W2377538627","https://openalex.org/W2171975302","https://openalex.org/W2142809053","https://openalex.org/W2107220315","https://openalex.org/W2022352247","https://openalex.org/W1589637664"],"abstract_inverted_index":{"Airway":[0],"segmentation":[1,58],"is":[2,17,174,216],"crucial":[3],"for":[4,89,136,147],"the":[5,54,65,71,79,99,110,116,127,164,182,193,197,203,221,234],"examination,":[6],"diagnosis,":[7],"and":[8,24,49,70,85,122,139,157,185,223,231,254],"prognosis":[9],"of":[10,56,67,118,167,179,205,225,233,250],"lung":[11,93,244,251],"diseases,":[12],"while":[13,105,246],"its":[14],"manual":[15,27],"delineation":[16],"unduly":[18],"burdensome.":[19],"To":[20],"alleviate":[21],"this":[22],"time-consuming":[23],"potentially":[25],"subjective":[26],"procedure,":[28],"researchers":[29],"have":[30,237],"proposed":[31,198,217,235],"methods":[32],"to":[33,83,101,162,218],"automatically":[34],"segment":[35,102],"airways":[36],"from":[37,192],"computerized":[38],"tomography":[39],"(CT)":[40],"images.":[41],"However,":[42],"some":[43],"small-sized":[44],"airway":[45,76,148,168,226],"branches":[46,77],"(e.g.,":[47],"bronchus":[48],"terminal":[50],"bronchioles)":[51],"significantly":[52],"aggravate":[53],"difficulty":[55],"automatic":[57],"by":[59,126,176,240],"machine":[60],"learning":[61],"models.":[62],"In":[63],"particular,":[64],"variance":[66],"voxel":[68],"values":[69],"severe":[72],"data":[73],"imbalance":[74],"in":[75,112,181,208],"make":[78],"computational":[80],"module":[81],"prone":[82],"discontinuous":[84],"false-negative":[86],"predictions.":[87],"especially":[88],"cohorts":[90],"with":[91],"different":[92,209],"diseases.":[94],"Attention":[95],"mechanism":[96],"has":[97],"shown":[98],"capacity":[100],"complex":[103],"structures,":[104],"fuzzy":[106,123,128,153,172,200],"logic":[107],"can":[108],"reduce":[109],"uncertainty":[111],"feature":[113,183],"representations.":[114],"Therefore,":[115],"integration":[117],"deep":[119,171],"attention":[120,129,154,195,201],"networks":[121],"theory,":[124],"given":[125],"layer,":[130],"should":[131],"be":[132],"an":[133,144],"escalated":[134],"solution":[135],"better":[137],"generalization":[138,230],"robustness.":[140],"This":[141],"paper":[142],"presents":[143],"efficient":[145],"method":[146,236],"segmentation,":[149],"comprising":[150],"a":[151,158,177,186,212],"novel":[152,213],"neural":[155],"network":[156],"comprehensive":[159],"loss":[160],"function":[161],"enhance":[163],"spatial":[165],"continuity":[166,222],"segmentation.":[169],"The":[170,228],"set":[173,178],"formulated":[175],"voxels":[180],"map":[184],"learnable":[187],"Gaussian":[188],"membership":[189],"function.":[190],"Different":[191],"existing":[194],"mechanism,":[196],"channel-specific":[199],"addresses":[202],"issue":[204],"heterogeneous":[206],"features":[207],"channels.":[210],"Furthermore,":[211],"evaluation":[214],"metric":[215],"assess":[219],"both":[220],"completeness":[224],"structures.":[227],"efficiency,":[229],"robustness":[232],"been":[238],"proved":[239],"training":[241],"on":[242,248],"normal":[243],"disease":[245],"testing":[247],"datasets":[249],"cancer,":[252],"COVID-19":[253],"pulmonary":[255],"fibrosis.":[256]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4295362409","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2025-01-04T19:22:04.328922","created_date":"2022-09-13"}