{"id":"https://openalex.org/W4294783376","doi":"https://doi.org/10.48550/arxiv.2209.00654","title":"Distributional Drift Adaptation with Temporal Conditional Variational Autoencoder for Multivariate Time Series Forecasting","display_name":"Distributional Drift Adaptation with Temporal Conditional Variational Autoencoder for Multivariate Time Series Forecasting","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4294783376","doi":"https://doi.org/10.48550/arxiv.2209.00654"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2209.00654","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2209.00654","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100382856","display_name":"Hui He","orcid":"https://orcid.org/0000-0003-1704-9428"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"He, Hui","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100784844","display_name":"Qi Zhang","orcid":"https://orcid.org/0000-0002-1037-1361"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Qi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102950239","display_name":"Kun Yi","orcid":"https://orcid.org/0000-0002-9980-6033"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yi, Kun","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5034376285","display_name":"Kaize Shi","orcid":"https://orcid.org/0000-0003-3561-3627"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Shi, Kaize","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5077191768","display_name":"Simeng Bai","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Bai, Simeng","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5082774439","display_name":"Zhendong Niu","orcid":"https://orcid.org/0000-0002-0576-7572"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Niu, Zhendong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5000798681","display_name":"Longbing Cao","orcid":"https://orcid.org/0000-0003-1562-9429"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Cao, Longbin","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.692362,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":61,"max":71},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12205","display_name":"Clustering of Time Series Data and Algorithms","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12205","display_name":"Clustering of Time Series Data and Algorithms","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection in High-Dimensional Data","score":0.9952,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11490","display_name":"Hydrological Modeling using Machine Learning Methods","score":0.9939,"subfield":{"id":"https://openalex.org/subfields/2305","display_name":"Environmental Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/autoencoder","display_name":"Autoencoder","score":0.61356175},{"id":"https://openalex.org/keywords/conditional-probability-distribution","display_name":"Conditional probability distribution","score":0.56444526},{"id":"https://openalex.org/keywords/leverage","display_name":"Leverage (statistics)","score":0.5618554},{"id":"https://openalex.org/keywords/forecasting","display_name":"Forecasting","score":0.540127},{"id":"https://openalex.org/keywords/dynamic-time-warping","display_name":"Dynamic Time Warping","score":0.510378},{"id":"https://openalex.org/keywords/rainfall-runoff-modeling","display_name":"Rainfall-Runoff Modeling","score":0.508622},{"id":"https://openalex.org/keywords/pattern-discovery","display_name":"Pattern Discovery","score":0.502866},{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness (evolution)","score":0.48369128},{"id":"https://openalex.org/keywords/concept-drift","display_name":"Concept drift","score":0.4811386}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6573636},{"id":"https://openalex.org/C101738243","wikidata":"https://www.wikidata.org/wiki/Q786435","display_name":"Autoencoder","level":3,"score":0.61356175},{"id":"https://openalex.org/C43555835","wikidata":"https://www.wikidata.org/wiki/Q2300258","display_name":"Conditional probability distribution","level":2,"score":0.56444526},{"id":"https://openalex.org/C153083717","wikidata":"https://www.wikidata.org/wiki/Q6535263","display_name":"Leverage (statistics)","level":2,"score":0.5618554},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.48369128},{"id":"https://openalex.org/C60777511","wikidata":"https://www.wikidata.org/wiki/Q3045002","display_name":"Concept drift","level":3,"score":0.4811386},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.46697426},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.46011665},{"id":"https://openalex.org/C151406439","wikidata":"https://www.wikidata.org/wiki/Q186588","display_name":"Time series","level":2,"score":0.44230738},{"id":"https://openalex.org/C18653775","wikidata":"https://www.wikidata.org/wiki/Q1333358","display_name":"Joint probability distribution","level":2,"score":0.41412744},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.40072876},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.36423677},{"id":"https://openalex.org/C149782125","wikidata":"https://www.wikidata.org/wiki/Q160039","display_name":"Econometrics","level":1,"score":0.36039913},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.25879678},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.17433244},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.17383346},{"id":"https://openalex.org/C89198739","wikidata":"https://www.wikidata.org/wiki/Q3079880","display_name":"Data stream mining","level":2,"score":0.1602863},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2209.00654","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2209.00654","pdf_url":"http://arxiv.org/pdf/2209.00654","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2209.00654","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2209.00654","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4249162344","https://openalex.org/W4226297177","https://openalex.org/W2602421298","https://openalex.org/W2497288182","https://openalex.org/W2325141645","https://openalex.org/W2190432607","https://openalex.org/W2135279381","https://openalex.org/W2063886698","https://openalex.org/W162901985","https://openalex.org/W12046094"],"abstract_inverted_index":{"Due":[0],"to":[1,46,92,117,136,160,176,181,187],"the":[2,5,34,47,54,72,94,110,138,153,178,192,205,212,220],"non-stationary":[3],"nature,":[4],"distribution":[6,20,30,42,74,116,141,161,186],"of":[7,142,147,155,191],"real-world":[8,201,230],"multivariate":[9],"time":[10,99],"series":[11],"(MTS)":[12],"changes":[13,162],"over":[14,37,98,211],"time,":[15],"which":[16],"is":[17],"known":[18],"as":[19,112],"drift.":[21],"Most":[22],"existing":[23],"MTS":[24,66,202,214],"forecasting":[25,35,215],"models":[26],"greatly":[27],"suffer":[28],"from":[29,58,77],"drift":[31,43],"and":[32,103,108,158,184,209,227],"degrade":[33],"performance":[36],"time.":[38],"Existing":[39],"methods":[40,69],"address":[41],"via":[44],"adapting":[45],"latest":[48],"arrived":[49],"data":[50,105],"or":[51],"self-correcting":[52],"per":[53],"meta":[55],"knowledge":[56],"derived":[57],"future":[59,104],"data.":[60],"Despite":[61],"their":[62],"great":[63],"success":[64],"in":[65,106,229],"forecasting,":[67],"these":[68],"hardly":[70],"capture":[71],"intrinsic":[73],"changes,":[75],"especially":[76],"a":[78,84,113,122,165,182],"distributional":[79,96],"perspective.":[80],"Accordingly,":[81],"we":[82,170],"propose":[83],"novel":[85,123],"framework":[86],"temporal":[87,114,124,129,148,193],"conditional":[88,115,172,194],"variational":[89],"autoencoder":[90],"(TCVAE)":[91],"model":[93],"dynamic":[95],"dependencies":[97,111],"between":[100],"historical":[101],"observations":[102],"MTSs":[107],"infer":[109],"leverage":[118],"latent":[119,143],"variables.":[120,144],"Specifically,":[121],"Hawkes":[125],"attention":[126,167],"mechanism":[127],"represents":[128],"factors":[130,149],"subsequently":[131],"fed":[132],"into":[133],"feed-forward":[134],"networks":[135],"estimate":[137],"prior":[139,179],"Gaussian":[140,180],"The":[145],"representation":[146],"further":[150,218],"dynamically":[151],"adjusts":[152],"structures":[154],"Transformer-based":[156],"encoder":[157],"decoder":[159],"by":[163],"leveraging":[164],"gated":[166],"mechanism.":[168],"Moreover,":[169],"introduce":[171],"continuous":[173],"normalization":[174],"flow":[175],"transform":[177],"complex":[183],"form-free":[185],"facilitate":[188],"flexible":[189],"inference":[190],"distribution.":[195],"Extensive":[196],"experiments":[197],"conducted":[198],"on":[199],"six":[200],"datasets":[203],"demonstrate":[204],"TCVAE's":[206],"superior":[207],"robustness":[208],"effectiveness":[210],"state-of-the-art":[213],"baselines.":[216],"We":[217],"illustrate":[219],"TCVAE":[221],"applicability":[222],"through":[223],"multifaceted":[224],"case":[225],"studies":[226],"visualization":[228],"scenarios.":[231]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4294783376","counts_by_year":[{"year":2023,"cited_by_count":2}],"updated_date":"2024-12-02T21:15:55.380192","created_date":"2022-09-06"}