{"id":"https://openalex.org/W4292947721","doi":"https://doi.org/10.48550/arxiv.2208.10238","title":"Learning Branched Fusion and Orthogonal Projection for Face-Voice Association","display_name":"Learning Branched Fusion and Orthogonal Projection for Face-Voice Association","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4292947721","doi":"https://doi.org/10.48550/arxiv.2208.10238"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2208.10238","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2208.10238","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101076782","display_name":"Muhammad Saad Saeed","orcid":"https://orcid.org/0000-0002-0893-9499"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Saeed, Muhammad Saad","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5016485532","display_name":"Shah Nawaz","orcid":"https://orcid.org/0000-0002-7715-4409"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Nawaz, Shah","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5032830353","display_name":"Muhammad Haris Khan","orcid":"https://orcid.org/0000-0001-9746-276X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Khan, Muhammad Haris","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5071515463","display_name":"Sajid Javed","orcid":"https://orcid.org/0000-0002-0036-2875"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Javed, Sajid","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5059502259","display_name":"Muhammad Haroon Yousaf","orcid":"https://orcid.org/0000-0001-8255-1145"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yousaf, Muhammad Haroon","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5046971342","display_name":"Alessio Del Bue","orcid":"https://orcid.org/0000-0002-2262-4872"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Del Bue, Alessio","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.656213,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":60,"max":71},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11448","display_name":"Face recognition and analysis","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11448","display_name":"Face recognition and analysis","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10860","display_name":"Speech and Audio Processing","score":0.9712,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10775","display_name":"Generative Adversarial Networks and Image Synthesis","score":0.9582,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/leverage","display_name":"Leverage (statistics)","score":0.5885615},{"id":"https://openalex.org/keywords/discriminative-model","display_name":"Discriminative model","score":0.57306206},{"id":"https://openalex.org/keywords/association","display_name":"Association (psychology)","score":0.44646007},{"id":"https://openalex.org/keywords/representation","display_name":"Representation","score":0.4395622},{"id":"https://openalex.org/keywords/code","display_name":"Code (set theory)","score":0.4353367},{"id":"https://openalex.org/keywords/modalities","display_name":"Modalities","score":0.4270147}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7799728},{"id":"https://openalex.org/C41608201","wikidata":"https://www.wikidata.org/wiki/Q980509","display_name":"Embedding","level":2,"score":0.6976652},{"id":"https://openalex.org/C153083717","wikidata":"https://www.wikidata.org/wiki/Q6535263","display_name":"Leverage (statistics)","level":2,"score":0.5885615},{"id":"https://openalex.org/C97931131","wikidata":"https://www.wikidata.org/wiki/Q5282087","display_name":"Discriminative model","level":2,"score":0.57306206},{"id":"https://openalex.org/C165064840","wikidata":"https://www.wikidata.org/wiki/Q1321061","display_name":"Matching (statistics)","level":2,"score":0.5150268},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.46820194},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.4499659},{"id":"https://openalex.org/C142853389","wikidata":"https://www.wikidata.org/wiki/Q744778","display_name":"Association (psychology)","level":2,"score":0.44646007},{"id":"https://openalex.org/C2776359362","wikidata":"https://www.wikidata.org/wiki/Q2145286","display_name":"Representation (politics)","level":3,"score":0.4395622},{"id":"https://openalex.org/C2776760102","wikidata":"https://www.wikidata.org/wiki/Q5139990","display_name":"Code (set theory)","level":3,"score":0.4353367},{"id":"https://openalex.org/C2779903281","wikidata":"https://www.wikidata.org/wiki/Q6888026","display_name":"Modalities","level":2,"score":0.4270147},{"id":"https://openalex.org/C2776459999","wikidata":"https://www.wikidata.org/wiki/Q2119376","display_name":"Fidelity","level":2,"score":0.41195455},{"id":"https://openalex.org/C36289849","wikidata":"https://www.wikidata.org/wiki/Q34749","display_name":"Social science","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.0},{"id":"https://openalex.org/C111472728","wikidata":"https://www.wikidata.org/wiki/Q9471","display_name":"Epistemology","level":1,"score":0.0},{"id":"https://openalex.org/C144024400","wikidata":"https://www.wikidata.org/wiki/Q21201","display_name":"Sociology","level":0,"score":0.0},{"id":"https://openalex.org/C94625758","wikidata":"https://www.wikidata.org/wiki/Q7163","display_name":"Politics","level":2,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2208.10238","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2208.10238","pdf_url":"http://arxiv.org/pdf/2208.10238","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2208.10238","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2208.10238","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/10","display_name":"Reduced inequalities","score":0.65}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4389116644","https://openalex.org/W4205463238","https://openalex.org/W3103844505","https://openalex.org/W2981954115","https://openalex.org/W2901057123","https://openalex.org/W259157601","https://openalex.org/W2521627374","https://openalex.org/W2153315159","https://openalex.org/W2110523656","https://openalex.org/W1482209366"],"abstract_inverted_index":{"Recent":[0],"years":[1],"have":[2],"seen":[3],"an":[4,29,75,80],"increased":[5],"interest":[6],"in":[7,112,144],"establishing":[8],"association":[9,96],"between":[10],"faces":[11],"and":[12,38,61,120,138,142,156,167,181,190,206],"voices":[13],"of":[14,162,185,213],"celebrities":[15],"leveraging":[16],"audio-visual":[17],"information":[18],"from":[19],"YouTube.":[20],"Prior":[21],"works":[22],"adopt":[23],"metric":[24],"learning":[25],"methods":[26,180],"to":[27,51,115,209],"learn":[28],"embedding":[30,92],"space":[31,93],"that":[32,74,107,171],"is":[33,85,152,187,220],"amenable":[34],"for":[35,94],"associated":[36],"matching":[37,207],"verification":[39,166,205],"tasks.":[40,97],"Albeit":[41],"showing":[42],"some":[43],"progress,":[44],"such":[45],"formulations":[46],"are,":[47],"however,":[48],"restrictive":[49],"due":[50],"dependency":[52],"on":[53,63,124,154,216],"distance-dependent":[54],"margin":[55],"parameter,":[56],"poor":[57],"run-time":[58],"training":[59],"complexity,":[60],"reliance":[62],"carefully":[64],"crafted":[65],"negative":[66],"mining":[67],"procedures.":[68],"In":[69,200],"this":[70,99],"work,":[71],"we":[72,101,202],"hypothesize":[73],"enriched":[76,117],"representation":[77],"coupled":[78],"with":[79,159],"effective":[81,189],"yet":[82],"efficient":[83,191],"supervision":[84,186],"important":[86],"towards":[87],"realizing":[88],"a":[89,103,145,160],"discriminative":[90],"joint":[91],"face-voice":[95,217],"To":[98],"end,":[100],"propose":[102],"light-weight,":[104],"plug-and-play":[105],"mechanism":[106,135],"exploits":[108],"the":[109,177,193,197,211],"complementary":[110],"cues":[111],"both":[113],"modalities":[114],"form":[116],"fused":[118],"embeddings":[119],"clusters":[121],"them":[122],"based":[123],"their":[125],"identity":[126],"labels":[127],"via":[128],"orthogonality":[129],"constraints.":[130],"We":[131],"coin":[132],"our":[133,172,182],"proposed":[134,183],"as":[136],"fusion":[137],"orthogonal":[139],"projection":[140],"(FOP)":[141],"instantiate":[143],"two-stream":[146],"network.":[147],"The":[148],"overall":[149],"resulting":[150],"framework":[151],"evaluated":[153],"VoxCeleb1":[155],"MAV-Celeb":[157],"datasets":[158],"multitude":[161],"tasks,":[163],"including":[164],"cross-modal":[165,204],"matching.":[168],"Results":[169],"reveal":[170],"method":[173],"performs":[174],"favourably":[175],"against":[176],"current":[178],"state-of-the-art":[179],"formulation":[184],"more":[188],"than":[192],"ones":[194],"employed":[195],"by":[196],"contemporary":[198],"methods.":[199],"addition,":[201],"leverage":[203],"tasks":[208],"analyze":[210],"impact":[212],"multiple":[214],"languages":[215],"association.":[218],"Code":[219],"available:":[221],"\\url{https://github.com/msaadsaeed/FOP}":[222]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4292947721","counts_by_year":[{"year":2023,"cited_by_count":1}],"updated_date":"2024-12-07T05:06:00.148932","created_date":"2022-08-24"}