{"id":"https://openalex.org/W4292955452","doi":"https://doi.org/10.48550/arxiv.2208.09885","title":"HST: Hierarchical Swin Transformer for Compressed Image Super-resolution","display_name":"HST: Hierarchical Swin Transformer for Compressed Image Super-resolution","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4292955452","doi":"https://doi.org/10.48550/arxiv.2208.09885"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2208.09885","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2208.09885","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5044009390","display_name":"Bingchen Li","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Bingchen","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100354039","display_name":"Xin Li","orcid":"https://orcid.org/0000-0003-2067-2763"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Xin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102804529","display_name":"Yiting Lu","orcid":"https://orcid.org/0009-0003-0807-9972"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lu, Yiting","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100358498","display_name":"Sen Liu","orcid":"https://orcid.org/0000-0003-3778-8973"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Liu, Sen","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5010861028","display_name":"Ruoyu Feng","orcid":"https://orcid.org/0000-0001-5226-1905"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Feng, Ruoyu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5079572598","display_name":"Zhibo Chen","orcid":"https://orcid.org/0000-0002-8525-5066"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chen, Zhibo","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11105","display_name":"Advanced Image Processing Techniques","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11105","display_name":"Advanced Image Processing Techniques","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13114","display_name":"Image Processing Techniques and Applications","score":0.9892,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10688","display_name":"Image and Signal Denoising Methods","score":0.9878,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/code","display_name":"Code (set theory)","score":0.4237272}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.72290885},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6705501},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.6036882},{"id":"https://openalex.org/C205372480","wikidata":"https://www.wikidata.org/wiki/Q210521","display_name":"Image resolution","level":2,"score":0.44530055},{"id":"https://openalex.org/C66322947","wikidata":"https://www.wikidata.org/wiki/Q11658","display_name":"Transformer","level":3,"score":0.4444421},{"id":"https://openalex.org/C13481523","wikidata":"https://www.wikidata.org/wiki/Q412438","display_name":"Image compression","level":4,"score":0.4280032},{"id":"https://openalex.org/C55020928","wikidata":"https://www.wikidata.org/wiki/Q3813865","display_name":"Image quality","level":3,"score":0.42458695},{"id":"https://openalex.org/C2776760102","wikidata":"https://www.wikidata.org/wiki/Q5139990","display_name":"Code (set theory)","level":3,"score":0.4237272},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.40113258},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.38490245},{"id":"https://openalex.org/C9417928","wikidata":"https://www.wikidata.org/wiki/Q1070689","display_name":"Image processing","level":3,"score":0.28926307},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.08619553},{"id":"https://openalex.org/C165801399","wikidata":"https://www.wikidata.org/wiki/Q25428","display_name":"Voltage","level":2,"score":0.056838185},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.0},{"id":"https://openalex.org/C119599485","wikidata":"https://www.wikidata.org/wiki/Q43035","display_name":"Electrical engineering","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2208.09885","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2208.09885","pdf_url":"http://arxiv.org/pdf/2208.09885","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2208.09885","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2208.09885","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.42,"display_name":"Partnerships for the goals","id":"https://metadata.un.org/sdg/17"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4310420093","https://openalex.org/W4307377619","https://openalex.org/W4298054035","https://openalex.org/W4226332880","https://openalex.org/W4226138400","https://openalex.org/W4200631625","https://openalex.org/W3154635860","https://openalex.org/W2903347069","https://openalex.org/W2362774332","https://openalex.org/W2005223122"],"abstract_inverted_index":{"Compressed":[0],"Image":[1],"Super-resolution":[2,87],"has":[3],"achieved":[4],"great":[5],"attention":[6],"in":[7,92,129,147],"recent":[8],"years,":[9],"where":[10],"images":[11],"are":[12,180],"degraded":[13],"with":[14,33,76,86,158],"compression":[15,40],"artifacts":[16,41],"and":[17,39,72,112,121,139,165,178],"low-resolution":[18,62],"artifacts.":[19],"Since":[20],"the":[21,30,34,53,61,68,84,98,106,130,135,144,152,159,170],"complex":[22],"hybrid":[23],"distortions,":[24],"it":[25],"is":[26,90],"hard":[27],"to":[28,51,59],"restore":[29,60],"distorted":[31],"image":[32,94,132,155],"simple":[35],"cooperation":[36,136],"of":[37,100,137,161,172],"super-resolution":[38,115,156],"removing.":[42],"In":[43],"this":[44],"paper,":[45],"we":[46,81,104],"take":[47,105],"a":[48],"step":[49],"forward":[50],"propose":[52],"Hierarchical":[54],"Swin":[55,77],"Transformer":[56],"(HST)":[57],"network":[58],"compressed":[63,93,131,154],"image,":[64],"which":[65],"jointly":[66],"captures":[67],"hierarchical":[69],"feature":[70],"representations":[71],"enhances":[73],"each-scale":[74],"representation":[75],"transformer,":[78],"respectively.":[79],"Moreover,":[80],"find":[82],"that":[83,123],"pretraining":[85,119],"(SR)":[88],"task":[89],"vital":[91],"super-resolution.":[95,133],"To":[96],"explore":[97],"effects":[99],"different":[101,113],"SR":[102,108,124],"pretraining,":[103],"commonly-used":[107],"tasks":[109],"(e.g.,":[110],"bicubic":[111],"real":[114],"simulations)":[116],"as":[117],"our":[118,141,173],"tasks,":[120],"reveal":[122],"plays":[125],"an":[126],"irreplaceable":[127],"role":[128],"With":[134],"HST":[138,142],"pre-training,":[140],"achieves":[143],"fifth":[145],"place":[146],"AIM":[148],"2022":[149],"challenge":[150],"on":[151],"low-quality":[153],"track,":[157],"PSNR":[160],"23.51dB.":[162],"Extensive":[163],"experiments":[164],"ablation":[166],"studies":[167],"have":[168],"validated":[169],"effectiveness":[171],"proposed":[174],"methods.":[175],"The":[176],"code":[177],"models":[179],"available":[181],"at":[182],"https://github.com/USTC-IMCL/HST-for-Compressed-Image-SR.":[183]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4292955452","counts_by_year":[],"updated_date":"2024-12-24T04:22:49.359751","created_date":"2022-08-24"}