{"id":"https://openalex.org/W4301703097","doi":"https://doi.org/10.48550/arxiv.2208.07463","title":"Conv-Adapter: Exploring Parameter Efficient Transfer Learning for ConvNets","display_name":"Conv-Adapter: Exploring Parameter Efficient Transfer Learning for ConvNets","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4301703097","doi":"https://doi.org/10.48550/arxiv.2208.07463"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2208.07463","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2208.07463","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100353596","display_name":"Hao Chen","orcid":"https://orcid.org/0000-0002-8400-3780"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chen, Hao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5067803447","display_name":"Ran Tao","orcid":"https://orcid.org/0000-0002-5243-7189"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Tao, Ran","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100399265","display_name":"Han Zhang","orcid":"https://orcid.org/0000-0001-8498-3451"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Han","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100685716","display_name":"Yidong Wang","orcid":"https://orcid.org/0009-0007-9969-8259"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Yidong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100448688","display_name":"Wei Ye","orcid":"https://orcid.org/0000-0002-3784-7788"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ye, Wei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100700956","display_name":"Jindong Wang","orcid":"https://orcid.org/0000-0002-4833-0880"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Jindong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5075333422","display_name":"Guosheng Hu","orcid":"https://orcid.org/0000-0002-9448-9892"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hu, Guosheng","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5057959136","display_name":"Marios Savvides","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Savvides, Marios","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":17,"citation_normalized_percentile":{"value":0.948059,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":94,"max":95},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9928,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9928,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10201","display_name":"Speech Recognition and Synthesis","score":0.9655,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":0.9639,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/adapter","display_name":"Adapter (computing)","score":0.9059483},{"id":"https://openalex.org/keywords/margin","display_name":"Margin (machine learning)","score":0.4301644}],"concepts":[{"id":"https://openalex.org/C177284502","wikidata":"https://www.wikidata.org/wiki/Q1005390","display_name":"Adapter (computing)","level":2,"score":0.9059483},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.72365457},{"id":"https://openalex.org/C66322947","wikidata":"https://www.wikidata.org/wiki/Q11658","display_name":"Transformer","level":3,"score":0.6673372},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5939005},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.5094667},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4392991},{"id":"https://openalex.org/C774472","wikidata":"https://www.wikidata.org/wiki/Q6760393","display_name":"Margin (machine learning)","level":2,"score":0.4301644},{"id":"https://openalex.org/C123657996","wikidata":"https://www.wikidata.org/wiki/Q12271","display_name":"Architecture","level":2,"score":0.42632368},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.30893046},{"id":"https://openalex.org/C9390403","wikidata":"https://www.wikidata.org/wiki/Q3966","display_name":"Computer hardware","level":1,"score":0.27387643},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.09332475},{"id":"https://openalex.org/C165801399","wikidata":"https://www.wikidata.org/wiki/Q25428","display_name":"Voltage","level":2,"score":0.0688467},{"id":"https://openalex.org/C142362112","wikidata":"https://www.wikidata.org/wiki/Q735","display_name":"Art","level":0,"score":0.0},{"id":"https://openalex.org/C119599485","wikidata":"https://www.wikidata.org/wiki/Q43035","display_name":"Electrical engineering","level":1,"score":0.0},{"id":"https://openalex.org/C153349607","wikidata":"https://www.wikidata.org/wiki/Q36649","display_name":"Visual arts","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2208.07463","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2208.07463","pdf_url":"http://arxiv.org/pdf/2208.07463","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2208.07463","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2208.07463","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.73,"id":"https://metadata.un.org/sdg/4","display_name":"Quality education"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4385571108","https://openalex.org/W4306381730","https://openalex.org/W4229060448","https://openalex.org/W4200251711","https://openalex.org/W3184035966","https://openalex.org/W3044188621","https://openalex.org/W2981692913","https://openalex.org/W2485605994","https://openalex.org/W2160602540","https://openalex.org/W2133028525"],"abstract_inverted_index":{"While":[0],"parameter":[1],"efficient":[2],"tuning":[3],"(PET)":[4],"methods":[5,106],"have":[6],"shown":[7],"great":[8],"potential":[9],"with":[10,21,48,133,149],"transformer":[11],"architecture":[12],"on":[13,27,51,56,117,129],"Natural":[14],"Language":[15],"Processing":[16],"(NLP)":[17],"tasks,":[18,58],"their":[19],"effectiveness":[20],"large-scale":[22],"ConvNets":[23],"is":[24,43],"still":[25],"under-studied":[26],"Computer":[28],"Vision":[29],"(CV)":[30],"tasks.":[31,53],"This":[32],"paper":[33],"proposes":[34],"Conv-Adapter,":[35],"a":[36,79],"PET":[37,104],"module":[38],"designed":[39],"for":[40,98],"ConvNets.":[41],"Conv-Adapter":[42,59,101,141],"light-weight,":[44],"domain-transferable,":[45],"and":[46,107,146],"architecture-agnostic":[47],"generalized":[49],"performance":[50,113,128,158],"different":[52],"When":[54],"transferring":[55],"downstream":[57],"learns":[60],"tasks-specific":[61],"feature":[62],"modulation":[63],"to":[64,144,159],"the":[65,72,112,130,160],"intermediate":[66],"representations":[67],"of":[68,82,91,114,121,137,154],"backbones":[69],"while":[70],"keeping":[71],"pre-trained":[73],"parameters":[74,90,155],"frozen.":[75],"By":[76],"introducing":[77],"only":[78,86],"tiny":[80],"amount":[81],"learnable":[83],"parameters,":[84],"e.g.,":[85],"3.5%":[87],"full":[88,115,162],"fine-tuning":[89,116],"ResNet50.":[92],"It":[93,124],"can":[94,142],"also":[95,125],"be":[96],"applied":[97],"transformer-based":[99],"backbones.":[100],"outperforms":[102],"previous":[103],"baseline":[105],"achieves":[108],"comparable":[109,157],"or":[110],"surpasses":[111],"23":[118],"classification":[119,132],"tasks":[120,148],"various":[122],"domains.":[123],"presents":[126],"superior":[127],"few-shot":[131],"an":[134],"average":[135],"margin":[136],"3.39%.":[138],"Beyond":[139],"classification,":[140],"generalize":[143],"detection":[145],"segmentation":[147],"more":[150],"than":[151],"50%":[152],"reduction":[153],"but":[156],"traditional":[161],"fine-tuning.":[163]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4301703097","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2024,"cited_by_count":11},{"year":2023,"cited_by_count":5}],"updated_date":"2025-04-22T07:56:52.144741","created_date":"2022-10-05"}